机器学习——感知机模型

机器学习系列文章

入门必读:机器学习介绍



前言

大家好,大家好✨,这里是bio🦖。这次为大家带来的是感知机模型。下面跟我一起来了解感知机模型吧!

感知机 (Perceptron) 是二类分类的线性分类模型 ,其输入为实例的特征向量 ,输出为实例的类别 ,分别为 +1-1。1957年,由康奈尔航空实验室(Cornell Aeronautical Laboratory)弗兰克·罗森布拉特 (Frank Rosenblatt)提出。它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类器。在人工神经网络领域中,感知机也被指为单层的人工神经网络,以区别于较复杂的多层感知机。在这里插入图片描述


1. 感知机

1.1 感知机定义

感知器使用特征向量来表示二元分类器,把矩阵上的输入 x \mathcal{x} x(实数值向量)映射到输出值 y \mathcal{y} y 上(一个二元的值)。
f ( x ) = { + 1 ,    i f   w ⋅ x + b > 0 − 1 ,    e l s e f(x) = \begin{cases} +1,\,\, if\,w\cdot x+b>0\\ -1,\,\,else\\ \end{cases} f(x)={+1,ifwx+b>01,else

w \mathcal{w} w 是实数的表示权重的向量, w ⋅ x \mathcal{w} \cdot \mathcal{x} wx 是点积。 b \mathcal{b} b 是偏置,一个不依赖于任何输入值的常数。


1.2 感知机学习策略

假设训练数据集是线性可分的 ,如下图所示。感知机学习的目标是求得一个能够将训练集正实例点和负实例点完全正确分开的直线 L \mathcal{L} L。 为了找出这样的超平而 , 即确定感知机模型参数 w \mathcal{w} w b \mathcal{b} b ,需要确定一个学习策略 , 即定义损失函数并将损失函数极小化 。

损失函数的一个选择是误分类数据点的数量 。 但是这样的损失函数不是参数 w \mathcal{w} w b \mathcal{b} b 的连续可导函数,不易优化 。 损失函数的另一个选择是误分类数据点到直线 L \mathcal{L} L 的总距离。感知机所采用的就是后者 。
在这里插入图片描述

  • 对于错误分类的数据点 ( x i , y i ) (\mathcal{x_i, y_i}) (xi,yi),总有:
    − y i ⋅ ( w ⋅ x i + b ) > 0 \mathcal{-y_i\cdot(w\cdot x_i+b) > 0} yi(wxi+b)>0
  • 错误分类点到直线 L \mathcal{L} L 的距离为:
    1 ∥ w ∥ ∣ w ⋅ x i + b ∣ \mathcal{\frac{1}{\|w\|} \vert w \cdot x_i +b \vert} w1wxi+b
  • 假设直线 L \mathcal{L} L 的误分类点集合为 m \mathcal{m} m , 那么所有误分类点到直线 L \mathcal{L} L 的总距离为:
    − 1 ∥ w ∥ ∑ i m y i ⋅ ( w ⋅ x i + b ) \mathcal{-\frac{1}{\|w\|} \sum_{i}^{m}y_i\cdot(w \cdot x_i +b)} w1imyi(wxi+b)
  • 不考虑 1 ∥ w ∥ \mathcal{\frac{1}{\|w\|}} w1,感知机的损失函数为:
    K ( w , b ) = − ∑ i m y i ⋅ ( w ⋅ x i + b ) \mathcal{K(w, b)= - \sum_{i}^{m}y_i\cdot(w \cdot x_i +b)} K(w,b)=imyi(wxi+b)

显然,损失函数 K \mathcal{K} K 是非负的。如果没有误分类点,损失函数值是 0 。而且,误分类点越少,误分类点离超平面越近,损失函数值就越小 。

而感知机的优化算法采用的是随机梯度下降算法 (Stochastic Gradient Descent)(后续更新),用误分类数据驱动损失函数 K \mathcal{K} K 不断减小。本文将采取二维数据,来展示感知机的工作过程。


2. 代码实现

2.1 构建数据

首先创建二维数据,并用线性回归模型拟合出直线 L \mathcal{L} L。代码如下:

import numpy as np
from sklearn.datasets import make_classification
from sklearn import linear_model
import matplotlib.pyplot as plt
import random

# two-dimention data
td_data = make_classification(n_samples=20, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=24)

td_data = list(td_data)
td_data[1] = np.array([1 if i == 0 else -1 for i in td_data[1]])
td_data = tuple(td_data)

# visualized data
fig, ax = plt.subplots()
scatter = ax.scatter(td_data[0][:, 0], td_data[0][:, 1], c=td_data[1], alpha=0.6, cmap="cool")
legend_1 = ax.legend(*scatter.legend_elements(), title="Classes", loc="upper left")
ax.add_artist(legend_1)
ax.set_xlabel("Feature_1")
ax.set_ylabel("Feature_2")

# add minimal residual sum of squares line as gold standard
reg = linear_model.LinearRegression()

# reshape for model fitting
reg.fit(td_data[0][:, 0].reshape(-1, 1), td_data[0][:, 1].reshape(-1, 1))
print(f"the intercept is {reg.intercept_[0]} and the coefficient is {reg.coef_[0][0]}")
formula = f"f(x)={round(reg.coef_[0][0], 2)}*x1-x2{round(reg.intercept_[0], 2)}"

# create a x axis for plotting
create_x_axis = np.linspace(min(td_data[0][:, 0]), max(td_data[0][:, 0]), 100).reshape(-1, 1)
predicted_value = reg.predict(create_x_axis)

ax.plot(create_x_axis, predicted_value, c="gold", alpha=0.8, label=formula)
handles, labels = ax.get_legend_handles_labels()
legend_2 = ax.legend(handles, labels, loc="lower right")

plt.show()

根据代码输出的结果可知,由线性回归模型拟合出的直线 L = 0.53 x 1 + x 2 − 0.6 \mathcal{L = 0.53x_1+x_2-0.6} L=0.53x1+x20.6
在这里插入图片描述

2.2 编写函数

接下来编写可复用的函数,减少代码编写量。partial_derivative_w 函数用于对变量 w \mathcal{w} w 求偏导,partial_derivative_b 函数用于对变量 b \mathcal{b} b 求偏导,decision_funtion 函数用于决策是否继续进行迭代,plot_function 函数绘制迭代结果图。

# take the partial derivative of w and b
def partial_derivative_w(data_point, label_point):
    # feature_1 * feature_2 * y
    result_w_1 = data_point[0] * label_point
    result_w_2 = data_point[1] * label_point
    return [result_w_1, result_w_2]

def partial_derivative_b(label_point):
    # label
    result_b = label_point
    return result_b

# decision function. w and b will be change if exist data point make 
def decision_funtion(weight_1, weigh_2, intercept):
    # if y*(w*x+b) < 0, the data point is wrongly classified.
    result = td_data[1] * ((td_data[0][:, 0] * weight_1) + (td_data[0][:, 1] * weight_2) + intercept)

    if len(result[np.where(result < 0)]) != 0:
        print(result)
        wrong_dp_index = np.where(result == result[np.where(result < 0)][0])[0][0]
        wrong_dp = td_data[0][wrong_dp_index]
        wrong_lb = td_data[1][wrong_dp_index]
        return [True, wrong_dp, wrong_lb]
    else:
        print("interation end")
        return [False, None, None]

def plot_function(weight_1, weight_2, intercept):
    fig, ax = plt.subplots()
    scatter = ax.scatter(td_data[0][:, 0], td_data[0][:, 1], c=td_data[1], alpha=0.6)
    ax.legend(*scatter.legend_elements(), title="Classes")
    ax.set_xlabel("Feature_1")
    ax.set_ylabel("Feature_2")
    b = intercept/weight_2
    hyperplane = [(-(weight_1/weight_2) * i) - b for i in create_x_axis]
    ax.plot(create_x_axis, hyperplane, c='green', alpha=0.5)
    plt.show()

2.3 迭代

设置特征一的初始权重为 0,特征二的初始权重为 0,初始截距为 0,学习率为 0.1,迭代次数为1000次,随机从数据中选择一个数据点作为分类错误数据点后开始迭代。

# initiate weight, intercept and learning rate
weight_1 = 0
weight_2 = 0
intercept = 0
learn_rate = 0.1


# iteration times
iteration_times = 1000

# random value in two dimention data
random_index = random.randint(0, 19)
feature_point = td_data[0][random_index]
label_point = td_data[1][random_index]
# it is not correctly classified for any data point resulting in loss function equte 0.

for iteration in range(iteration_times):
    # w1 = w0 + (learn_rate * y * x)
    new_weight_1 = weight_1 + (learn_rate * partial_derivative_w(feature_point, label_point)[0])
    new_weight_2 = weight_2 + (learn_rate * partial_derivative_w(feature_point, label_point)[1])
    # b1 = b0 + learn_rate * y
    new_intercept = intercept + (learn_rate * partial_derivative_b(label_point))
    
    # decision
    decision_condition, wrong_dp, wrong_lp = decision_funtion(new_weight_1, new_weight_2, new_intercept)
    
    if decision_condition:
        weight_1 = new_weight_1
        weight_2 = new_weight_2
        intercept = new_intercept
        # wrong data point
        feature_point = wrong_dp
        label_point = wrong_lp
        print(f"The {iteration + 1} iteration\tweight_1={weight_1}\tweight_2={weight_2}\tintercept={intercept}\n")
        plot_function(weight_1, weight_2, intercept)
    else:
        print(f"The {iteration + 1} iteration\tweight_1={new_weight_1}\tweight_2={new_weight_2}\tintercept={new_intercept}\n")
        plot_function(new_weight_1, new_weight_2, new_intercept)
        break

迭代结果如下表所示,在迭代到第八次的时候,感知机模型成功将所有数据点正确分类。

迭代次数效果图片
1在这里插入图片描述
2在这里插入图片描述
3在这里插入图片描述
4在这里插入图片描述
5在这里插入图片描述
6在这里插入图片描述
7在这里插入图片描述
8在这里插入图片描述

3. 总结

以上就是本次更新的全部内容。关于本次内容有一下缺点:

  • 用于迭代的错误分类数据点没有被绘制出来。
  • 由于跳过了大部分数学知识,内容衔接没有做好。
  • 迭代数据点完全随机,复现过程可能不同。

后续将会更新:

  • 感知机模型的数学解释
  • 随机梯度算法的解释
  • 可视化迭代过程的错误分类数据点(可能)

喜欢本次内容的小伙伴麻烦👍点赞+👍关注。

  • 54
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 简介1 1.1 自动语音识别:更好的沟通之桥 1 1.1.1 人类之间的交流 2 1.1.2 人机交流 2 1.2 语音识别系统的基本结构 4 1.3 全书结构 6 1.3.1 第一部分:传统声学模型6 1.3.2 第二部分:深度神经网络6 1.3.3 第三部分:语音识别中的DNN-HMM 混合系统7 1.3.4 第四部分:深度神经网络中的特征表示学习 7 1.3.5 第五部分:高级的深度模型 7 第一部分传统声学模型9 2 混合高斯模型10 2.1 随机变量10 2.2 高斯分布和混合高斯随机变量11 2.3 参数估计13 2.4 采用混合高斯分布对语音特征建模 15 3 隐马尔可夫模型及其变体17 3.1 介绍17 3.2 马尔可夫链19 3.3 序列与模型 20 3.3.1 隐马尔可夫模型的性质21 3.3.2 隐马尔可夫模型的仿真22 3.3.3 隐马尔可夫模型似然度的计算22 3.3.4 计算似然度的高效算法24 3.3.5 前向与后向递归式的证明25 3.4 期望zui大化算法及其在学习HMM 参数中的应用 26 3.4.1 期望zui大化算法介绍 26 3.4.2 使用EM 算法来学习HMM 参数——Baum-Welch 算法 28 3.5 用于解码HMM 状态序列的维特比算法32 3.5.1 动态规划和维特比算法32 3.5.2 用于解码HMM 状态的动态规划算法33 3.6 隐马尔可夫模型和生成语音识别模型的变体35 3.6.1 用于语音识别的GMM-HMM 模型 36 3.6.2 基于轨迹和隐藏动态模型的语音建模和识别37 3.6.3 使用生成模型HMM 及其变体解决语音识别问题 38 第二部分深度神经网络41 4 深度神经网络42 4.1 深度神经网络框架42 4.2 使用误差反向传播来进行参数训练 45 4.2.1 训练准则 45 4.2.2 训练算法46 4.3 实际应用50 4.3.1 数据预处理51 4.3.2 模型初始化52 4.3.3 权重衰减52 4.3.4 丢弃法 53 4.3.5 批量块大小的选择55 4.3.6 取样随机化56 4.3.7 惯性系数 57 4.3.8 学习率和停止准则58 4.3.9 网络结构59 4.3.10 可复现性与可重启性 59 5 高级模型初始化技术61 5.1 受限玻尔兹曼机61 5.1.1 受限玻尔兹曼机的属性63 5.1.2 受限玻尔兹曼机参数学习66 5.2 深度置信网络预训练 69 5.3 降噪自动编码器预训练71 5.4 鉴别性预训练74 5.5 混合预训练75 5.6 采用丢弃法的预训练 75 第三部分语音识别中的深度神经网络–隐马尔可夫混合模型77 6 深度神经网络–隐马尔可夫模型混合系统78 6.1 DNN-HMM 混合系统 78 6.1.1 结构78 6.1.2 用CD-DNN-HMM 解码80 6.1.3 CD-DNN-HMM 训练过程81 6.1.4 上下文窗口的影响83 6.2 CD-DNN-HMM 的关键模块及分析 85 6.2.1 进行比较和分析的数据集和实验85 6.2.2 对单音素或者三音素的状态进行建模 87 6.2.3 越深越好88 6.2.4 利用相邻的语音帧89 6.2.5 预训练 90 6.2.6 训练数据的标注质量的影响 90 6.2.7 调整转移概率 91 6.3 基于KL 距离的隐马尔可夫模型91 7 训练和解码的加速93 7.1 训练加速93 7.1.1 使用多GPU 流水线反向传播94 7.1.2 异步随机梯度下降97 7.1.3 增广拉格朗日算法及乘子方向交替算法100 7.1.4 减小模型规模 101 7.1.5 其他方法102 7.2 加速解码103 7.2.1 并行计算103 7.2.2 稀疏网络105 7.2.3 低秩近似107 7.2.4 用大尺寸DNN 训练小尺寸DNN108 7.2.5 多帧DNN 109 8 深度神经网络序列鉴别性训练111 8.1 序列鉴别性训练准则 111 8.1.1 zui大相互信息 112 8.1.2 增强型MMI 113 8.1.3 zui小音素错误/状态级zui小贝叶斯风险114 8.1.4 统一的公式115 8.2 具体实现中的考量116 8.2.1 词图产生116 8.2.2 词图补偿117 8.2.3 帧平滑 119 8.2.4 学习率调整119 8.2.5 训练准则选择 120 8.2.6 其他考量120 8.3 噪声对比估计 121 8.3.1 将概率密度估计问题转换为二分类设计问题121 8.3.2 拓展到未归一化的模型123 8.3.3 在深度学习网络训练中应用噪声对比估计算法 124 第四部分深度神经网络中的特征表示学习127 9 深度神经网络中的特征表示学习128 9.1 特征和分类器的联合学习128 9.2 特征层级129 9.3 使用随意输入特征的灵活性 133 9.4 特征的鲁棒性 134 9.4.1 对说话人变化的鲁棒性134 9.4.2 对环境变化的鲁棒性 135 9.5 对环境的鲁棒性137 9.5.1 对噪声的鲁棒性138 9.5.2 对语速变化的鲁棒性 140 9.6 缺乏严重信号失真情况下的推广能力141 10 深度神经网络和混合高斯模型的融合144 10.1 在GMM-HMM 系统中使用由DNN 衍生的特征144 10.1.1 使用Tandem 和瓶颈特征的GMM-HMM 模型144 10.1.2 DNN-HMM 混合系统与采用深度特征的GMM-HMM 系统的比较147 10.2 识别结果融合技术149 10.2.1 识别错误票选降低技术(ROVER) 149 10.2.2 分段条件随机场(SCARF) 151 10.2.3 zui小贝叶斯风险词图融合153 10.3 帧级别的声学分数融合153 10.4 多流语音识别 154 11 深度神经网络的自适应技术157 11.1 深度神经网络中的自适应问题157 11.2 线性变换159 11.2.1 线性输入网络.159 11.2.2 线性输出网络 159 11.3 线性隐层网络 161 11.4 保守训练162 11.4.1 L2 正则项163 11.4.2 KL 距离正则项163 11.4.3 减少每个说话人的模型开销 165 11.5 子空间方法167 11.5.1 通过主成分分析构建子空间 167 11.5.2 噪声感知、说话人感知及设备感知训练168 11.5.3 张量172 11.6 DNN 说话人自适应的效果172 11.6.1 基于KL 距离的正则化方法 173 11.6.2 说话人感知训练174 第五部分先进的深度学习模型177 12 深度神经网络中的表征共享和迁移178 12.1 多任务和迁移学习178 12.1.1 多任务学习 178 12.1.2 迁移学习180 12.2 多语言和跨语言语音识别180 12.2.1 基于Tandem 或瓶颈特征的跨语言语音识别181 12.2.2 共享隐层的多语言深度神经网络182 12.2.3 跨语言模型迁移185 12.3 语音识别中深度神经网络的多目标学习188 12.3.1 使用多任务学习的鲁棒语音识别188 12.3.2 使用多任务学习改善音素识别189 12.3.3 同时识别音素和字素(graphemes) 190 12.4 使用视听信息的鲁棒语音识别 190 13 循环神经网络及相关模型192 13.1 介绍192 13.2 基本循环神经网络中的状态-空间公式194 13.3 沿时反向传播学习算法195 13.3.1 zui小化目标函数 196 13.3.2 误差项的递归计算196 13.3.3 循环神经网络权重的更新197 13.4 一种用于学习循环神经网络的原始对偶技术199 13.4.1 循环神经网络学习的难点199 13.4.2 回声状态(Echo-State)性质及其充分条件 199 13.4.3 将循环神经网络的学习转化为带约束的优化问题 200 13.4.4 一种用于学习RNN 的原始对偶方法201 13.5 结合长短时记忆单元(LSTM)的循环神经网络203 13.5.1 动机与应用203 13.5.2 长短时记忆单元的神经元架构204 13.5.3 LSTM-RNN 的训练205 13.6 循环神经网络的对比分析205 13.6.1 信息流方向的对比:自上而下还是自下而上 206 13.6.2 信息表征的对比:集中式还是分布式208 13.6.3 解释能力的对比:隐含层推断还是端到端学习209 13.6.4 参数化方式的对比:吝啬参数集合还是大规模参数矩阵 209 13.6.5 模型学习方法的对比:变分推理还是梯度下降210 13.6.6 识别正确率的比较211 13.7 讨论212 14 计算型网络214 14.1 计算型网络214 14.2 前向计算215 14.3 模型训练 218 14.4 典型的计算节点222 14.4.1 无操作数的计算节点 223 14.4.2 含一个操作数的计算节点223 14.4.3 含两个操作数的计算节点228 14.4.4 用来计算统计量的计算节点类型235 14.5 卷积神经网络 236 14.6 循环连接 239 14.6.1 只在循环中一个接一个地处理样本240 14.6.2 同时处理多个句子242 14.6.3 创建任意的循环神经网络243 15 总结及未来研究方向245 15.1 路线图 245 15.1.1 语音识别中的深度神经网络启蒙245 15.1.2 深度神经网络训练和解码加速248 15.1.3 序列鉴别性训练248 15.1.4 特征处理249 15.1.5 自适应 250 15.1.6 多任务和迁移学习251 15.1.7 卷积神经网络 251 15.1.8 循环神经网络和长短时记忆神经网络251 15.1.9 其他深度模型 252 15.2 技术前沿和未来方向 252 15.2.1 技术前沿简析252 15.2.2 未来方向253
《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 1 1.1数据挖掘 1 1.1.1数据挖掘的概念 1 1.1.2数据挖掘的方法与技术 1 1.2关联规则 3 1.2.1关联规则的概念 3 1.2.2关联规则的实现——Apriori算法 4 2.用Matlab实现关联规则 6 2.1Matlab概述 6 2.2基于Matlab的Apriori算法 7 3.用java实现关联规则 11 3.1java界面描述 11 3.2java关键代码描述 14 4、实验总结 19 4.1实验的不足和改进 19 4.2实验心得 20 1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里, 数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以 从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的 ,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人 只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据) ·数据集成(多种数据源可以组合在一起) ·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式 识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集 成等许多应用领域的大量技术。数据挖掘主要包括以下方法。 神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布 存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关 注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表 的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield的离散模型和连续 模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art模型、koh olon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人 们难以理解网络的学习和决策过程。 遗传算法:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿 生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数 据挖掘中被加以应用。sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该 工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据 挖掘的有效方法之一。遗传算法的应用还体现在与神经网络、粗糙集等技术的结合上。 如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层 单元;用遗传算法和bp算法结合训练神经网络,然后从网络提取规则等。但遗传算法的 算法较复杂,收敛于局部极小的较早收敛问题尚未解决。 决策树方法:决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类, 从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适 合大规模的数据处理。 粗糙集方法:粗糙集理论是一种研究不精确、不确定知识的数学工具。粗糙集方法有 几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗 糙集处理的对象是类似二维关系表的信息表。目前成熟的关系数据库管理系统和新发展 起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。但粗糙集的数学基 础是集合论,难以直接处理连续的属性。而现实信息表中连续属性是普遍存在的。因此 连续属性的离散化是制约粗糙集理论实用化的难点。 覆盖正例排斥反例方法:它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。 首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相 容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取 式)。比较典型的算法有michalski的aq11方法、洪家荣改进的aq15方法以及他的ae5方法 。 统计分析方法:在数据库字段项之间存在两种关系:函数关系(能用函数公式表示的 确定性关系)和相关关系(不能用函数公式表示,但仍是相关确定性关系),对它们的分析 可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计(求 大量数据中的最大值、最小值、
《数据挖掘》实验报告0 目录 1.关联规则的基本概念和方法 1 1.1数据挖掘 1 1.1.1数据挖掘的概念 1 1.1.2数据挖掘的方法与技术 1 1.2关联规则 3 1.2.1关联规则的概念 3 1.2.2关联规则的实现——Apriori算法 4 2.用Matlab实现关联规则 6 2.1Matlab概述 6 2.2基于Matlab的Apriori算法 7 3.用java实现关联规则 11 3.1java界面描述 11 3.2java关键代码描述 14 4、实验总结 19 4.1实验的不足和改进 19 4.2实验心得 20 1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里, 数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以 从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的 ,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人 只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据) ·数据集成(多种数据源可以组合在一起) ·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式 识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集 成等许多应用领域的大量技术。数据挖掘主要包括以下方法。 神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布 存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关 注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表 的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield的离散模型和连续 模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art模型、koh olon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人 们难以理解网络的学习和决策过程。 遗传算法:遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿 生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数 据挖掘中被加以应用。sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该 工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据 挖掘的有效方法之一。遗传算法的应用还体现在与神经网络、粗糙集等技术的结合上。 如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层 单元;用遗传算法和bp算法结合训练神经网络,然后从网络提取规则等。但遗传算法的 算法较复杂,收敛于局部极小的较早收敛问题尚未解决。 决策树方法:决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类, 从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适 合大规模的数据处理。 粗糙集方法:粗糙集理论是一种研究不精确、不确定知识的数学工具。粗糙集方法有 几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗 糙集处理的对象是类似二维关系表的信息表。目前成熟的关系数据库管理系统和新发展 起来的数据仓库管理系统,为粗糙集的数据挖掘奠定了坚实的基础。但粗糙集的数学基 础是集合论,难以直接处理连续的属性。而现实信息表中连续属性是普遍存在的。因此 连续属性的离散化是制约粗糙集理论实用化的难点。 覆盖正例排斥反例方法:它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。 首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相 容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取 式)。比较典型的算法有michalski的aq11方法、洪家荣改进的aq15方法以及他的ae5方法 。 统计分析方法:在数据库字段项之间存在两种关系:函数关系(能用函数公式表示的 确定性关系)和相关关系(不能用函数公式表示,但仍是相关确定性关系),对它们的分析 可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计(求 大量数据中的最大值、最小值
中国人工智能理财分析报告 中国人工智能理财分析报告全文共36页,当前为第1页。 分析定义与分析范畴 人工智能理财,通过算法和数据模型驱动, 以用户偏好、财务状况等为基础,围绕客户 生命周期的精细化管理、投资策略建议、客 户服务、投后跟踪等一系列自动化、智能化、 个性化的理财决策系统。 分析范畴 本专题主要对人工智能(AI)技术在理财领域 的创新应用进行研究,包括不限于市场发展背 景梳理、市场现状分析、典型厂商产品与服务、 厂商测评比较分析等,所涉及厂商对象包括不 限于招商银行摩羯智投、蚂蚁财富、理财通、 雪球蛋卷等。 分析定义 中国人工智能理财分析报告全文共36页,当前为第2页。 目录 CONTENTS 人工智能理财——新市场,新机遇 01 角力人工智能理财 平台发展路径差异化 03 理财产业价值链升级 人工智能理财商业新生态崛起 02 04 中国人工智能理财市场发展趋势 中国人工智能理财分析报告全文共36页,当前为第3页。 PART 1 人工智能理财——新市场,新机遇 中国人工智能理财分析报告全文共36页,当前为第4页。 金融服务企业向更高阶智能化方向演进 机器学习 深度学习 服务智能化 生产自动化 经营数字化 技术拓展 阶段1:机器设备或系统在计算机自 动控制应用下进行信息处理与生产; 人工智能自1956年被提出后不断演化,机器学习成为其中一个分支,2000年左右深度 学习成为机器学习的进一步延伸,后续在金融理财领域掀起新的变革浪潮 ; 阶段3:数据、媒介产生更广度连 接,企业可感知数据量能力增强, AI应用能力成为企业核心竞争力, 金融理财行业也不例外; 阶段2:区别传统多媒体技术,物理流程、设施替代,在数据 资产分析与挖掘基础上,实现企业经营的数据与算法驱动; 计算机视觉 语音识别 自然语言交互 …… 企业 演化 进阶 技术应用 模式识别 中国人工智能理财分析报告全文共36页,当前为第5页。 人工智能理财以用户金融需求全生命周期为核心 获取 提升 保持 衰退 流失 精 准 识 别 潜 在 用户 策略优化 , 智能客服 , 提升客户贡 优化用户体 献 验 智能预警, 延 长客户存续周 期 个性推荐,增 大留存机率 用户 人工 智能 人工智能理财全生命周期客户服务 保障用户参与度、提升生命周期 中每个节点转化率; 提升企业运营活动的必要性和有 效性; 人工智能理财优势: 特点:以客户金融需求全生命周期管理为核心 风险管理 其他 机器客服 智能投顾 人工智能理财 DEF:通过算法和数据模型驱动,以用户偏好、财务状况等为基础, 围绕客户生命周期的精细化管理、投资策略建议、客户服务、投后跟 踪等一系列自动化、智能化、个性化的理财人工智能决策系统。 中国人工智能理财分析报告全文共36页,当前为第6页。 社会多驱动力奠定人工智能理财快速发展基础 政策支持 人工智能产业支持政策不断出台,逐渐上升为国家 战略技术重点,2016年国务院下发《"十三五"国 家战略性新兴产业发展规划的通知》,要求发展人 工智能,培育人工智能产业生态;2017年7月20日 国务院印发《新一代人工智能发展规划》,至2030 年推动实现完备AI产业链和高端产业群。 市场升级 用户行为变迁 移动端投资理财(非证券及 银行服务应用)6月活跃规模 近九千万。 2016年居民可投资资产规模超百万亿人民币,投资 者资产增长与欠缺理财服务之间矛盾越发迫切;而 语音/文字/图像处理、数据分析等应用逐步成熟,有 利于降低财富管理市场中固有的门槛限制。 8,301.8 8,181.1 8,941.7 9,200.0 8,400.0 7,600.0 6,800.0 6,000.0 2017年04月 2017年05月 2017年06月 注:活跃用户统计口径为季度使用一次,前端停留5S以 上。只对独立APP中的用户数据进行监测统计,不包括APP之外的调用 等行为产生的用户数据。截止2017年第2季度基于对20.7亿累计装机覆 盖及4.8亿活跃用户的行为监测结果采用自主研发的enfoTech技术,帮助您有效 了解数字消费者在智能手机上的行为轨迹。 2017年4-6月中国移动互联网投资理财活跃用户 月活跃用户(万) 中国人工智能理财分析报告全文共36页,当前为第7页。 技术迭代支撑金融场景标准、全量化的智能决策 智能决策:构成标准、全量化的小微金融和理财等场景应用基础; Tree,Forest模型 过去10年 线性模型+特征工程 过去5年 自动特征工程 深度学习 图像、语音、自然语言理解 达到或者超过人的水平 趋势 算法提升 工具化 专用芯片 中国人工智能理财分析报告全文共36页,当前为第8页。 人工智能理财市场起步 先行者引导商业模式变迁 B C I II III IV VII H VI
深度学习 快速推进中的机器学习人工智能前沿 人工智能机器学习(1)全文共61页,当前为第1页。 提纲 深度学习(DL)及其应用前沿 DL在CV领域应用的启示 关键算法介绍 Perceptron及学习算法 MLP及其BP算法 Auto-Encoder CNN及其主要变种 关于DL的思考与讨论 2 人工智能机器学习(1)全文共61页,当前为第2页。 机器学习的基本任务 3 Class label (Classification) Vector (Estimation) {dog, cat, horse,, …} Object recognition Super resolution Low-resolution image High-resolution image 人工智能机器学习(1)全文共61页,当前为第3页。 源起——生物神经系统的启示 神经元之间通过突触(synapse)连接 层级感受野,学习使突触连接增强或变弱甚至消失 4 Hubel, D. H. & Wiesel, T. N. (1962) 人工智能机器学习(1)全文共61页,当前为第4页。 第一代神经网络 感知机(Perceptrons)模型[Rosenblatt, 1957] 二类分类,单个神经元的功能(输入输出关系) = f为激活函数,其中: = =1 = =0 5 Frank Rosenblatt(1957), The Perceptron--a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory. 人工智能机器学习(1)全文共61页,当前为第5页。 第一代神经网络 单层感知机(Perceptrons)模型的局限性 Minsky & Papert的专著Perceptron(1969) 只能对线性可分的模式进行分类 解决不了异或问题 几乎宣判了这类模型的死刑,导致了随后多年NN研究的低潮 6 人工智能机器学习(1)全文共61页,当前为第6页。 2nd Generation Neural Networks 多层感知机(Multi-layer Perceptron, MLP) 超过1层的hidden layers(正确输出未知的层) BP算法 [Rumelhart et al., 1986] Compute error signal; Then, back-propagate error signal to get derivatives for learning 7 David E. Rumelhart,, Geoffrey E. Hinton, and Ronald J. Williams. (Oct.1986). "Learning representations by back-propagating errors". Nature 323 (6088): 533–536 Ʃ Ʃ Ʃ Ʃ Ʃ Ʃ 1 2 3 1 2 人工智能机器学习(1)全文共61页,当前为第7页。 Error Backpropagation W is the parameter of the network; J is the objective function Feedforward operation Back error propagation David E. Rumelhart,, Geoffrey E. Hinton, and Ronald J. Williams. (Oct.1986). "Learning representations by back-propagating errors". Nature 323 (6088): 533–536 Output layer Hidden layers Input layer Target values 人工智能机器学习(1)全文共61页,当前为第8页。 2nd Generation Neural Networks 理论上多层好 两层权重即可逼近任何连续函数映射 遗憾的是,训练困难 It requires labeled training data Almost all data is unlabeled. The learning time does not scale well It is very slow in networks with multiple hidden layers. It can get stuck in poor local optima These are often quite good, but for deep nets they are far
工作心得:人工智能云计算平台,开启人工智能新生态(最新) XX科技有限公司以人工智能科学中的机器视觉为突破点,坚持用技术和数据驱动企 业成长并积极推进人工智能商业化。X科技以"先让机器看懂世界,再让机器真正思考"为 使命,希望赋能机器,用人工智能造福人类,通过搭建以"互联网+"为基础的人工智能云 计算平台——Megvii Cloud,同时建立人工智能生态圈,推动人工智能技术产业化发展,为企业用户提供开放 、全面的智能服务。通过大数据、云计算和机器学习技术使Megvii Cloud人工智能云平台能够和智能终端紧密融合并协同交互,Megvii Cloud能够为跨行业为不同领域的企业用户提供智能行业解决方案,帮助企业拓展、加强 现有业务并完成数字化、智能化升级。 一、基本情况 (一)X科技简介 X科技成立于2011年,是一家以机器视觉为核心的人工智能企业,自主研发的的视觉 感知网络,智能硬件,智能云服务等产品技术居世界领先水平,2014年X科技被认定为国 家级高新技术企业,2015年,被认定为中关村高新技术企业,经过将近五年的时间,公 司迅速发展,现有员工220人。 X科技的人工智能云平台(Megvii Cloud)与智能物联平台(Megvii SensorNet)两大核心产品,为企业用户提供全方位的行业智能解决方案和智能数据服务 。其中人工智能云平台中的Face++人脸识别云平台已成为世界最大的人脸识别服务平台 ,每日调用量接近2000万次。 目前,X科技产品及技术解决方案已经在金融、安防、教育、交通等重要行业领域中 应用,已与包括中信银行、中国电信、国家公安部第一研究所、万科、阿里巴巴、清华 大学、铁路总公司等龙头企业在内300余家企业、政府部门应用和合作,近三年已带来收 入2287万元,利税200万元。 (二)Megvii Cloud人工智能云平台项目说明 Megvii Cloud人工智能云计算平台是一个商用的机器视觉和人工智能公有云计算平台,包含Saa S服务以及PaaS服务平台,为商业用户和独立软件开发商提供先进的识别、分类算法和成 熟的机器视觉解决方案,通过人脸识别、物体识别、场景识别、文字识别、行人检测、 图片分类等技术实现图像结构化并能够被检索。基于先进的深度学习技术和团队领先的 核心算法能力,Megvii Cloud云平台孵化的服务和产品已经为众多开发者和企事业单位提供了智能解决方案,并 正在与众多软件服务商联合建立智能生态系统。 其中,Megvii Cloud PaaS服务孕育了Face++,以及最早应用深度学习视觉技术的商业化SaaS平台——基于公司 核心图像识别技术(包括人脸识别和文字识别)的FaceID在线身份验证服务,目前Face ID并已覆盖80%金融行业认证业务。 (三)"互联网+"人工智能云平台的社会价值 有了"互联网+"为基础的人工智能云平台将能够为社会带来巨大经济效益,提升生产 效率和人民生活质量,人工智能可以为企业节约相当一部分人力成本。以X的人脸识别身 份认证服务为例,传统银行以网点为核心的庞大业务量将逐渐转移到每个人手上的手机 、平板电脑等智能设备上,客户自助完成业务办理,节约了排队时间成本和柜台的资源 成本。而在安防领域,人工智能可以代替办案人员查阅、比对海量的信息,帮助公安机 关快速破案,有效打击犯罪维护社会治安。从更宏观的角度,人工智能产业化将成为经 济发展的新引擎,人工智能能够渗透到每一个行业,每一个生产环节,增强人的能力, 使人类取得跨越式进步。 二、主要做法 Megvii Cloud人工智能云平台基于人工智能、云计算和大数据等关键技术,提供对机器学习研发 过程端到端的技术支撑,从数据、模型、算法到应用程序接口,再到行业应用的完整生 命周期自动化管理,目标是从根本上提高人工智能,尤其是人工神经网络、深度学习等 前沿技术的服务化水平、应用化效率和创新速度,并为计算机视觉应用领域,如金融、 安防、零售、企业管理、物业管理、自动驾驶、工业制造等行业,提供有针对性的更"精 准"、更"智能"、更"广泛"的技术支撑。 (一)核心技术创新性 公司的核心技术是基于深度学习技术的计算机视觉算法(包括人脸识别,文字识别 ,行人和车辆识别,监控视频智能分析和结构化等技术)和提供算法训练和运行平台的 深度学习计算平台。 深度学习技术基于海量的图像和视频训练数据,构建包含数万乃至数亿可学习参数 的多层人工神经网络模型进行训练,从而使得训练好的模型可以应用于图像和视频分类 ,图像和视频中的物体检测和识别等多种智能任务。相比于上一代机器学习人工智能 技术,深度学习构建的模型大大强化了模型复杂度,包含参数规模十分庞大,神经网络 的层数也大大增加,甚至可以达到上百乃至上千层神经网络,从而使得模型的学习能力 大大

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bio大恐龙

您的打赏是我前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值