题目
题目描述
对于给定的一个长度为N的正整数数列 A 1 ∼ N A_{1\sim N} A1∼N,现要将其分成 M M M( M ≤ N M\leq N M≤N)段,并要求每段连续,且每段和的最大值最小。
关于最大值最小:
例如一数列 4 2 4 5 1 4\ 2\ 4\ 5\ 1 4 2 4 5 1 要分成 3 3 3 段。
将其如下分段:
[ 4 2 ] [ 4 5 ] [ 1 ] [4\ 2][4\ 5][1] [4 2][4 5][1]
第一段和为 6 6 6,第 2 2 2 段和为 9 9 9,第 3 3 3 段和为 1 1 1,和最大值为 9 9 9。
将其如下分段:
[ 4 ] [ 2 4 ] [ 5 1 ] [4][2\ 4][5\ 1] [4][2 4][5 1]
第一段和为 4 4 4,第 2 2 2 段和为 6 6 6,第 3 3 3 段和为 6 6 6,和最大值为 6 6 6。
并且无论如何分段,最大值不会小于 6 6 6。
所以可以得到要将数列 4 2 4 5 1 4\ 2\ 4\ 5\ 1 4 2 4 5 1 要分成 3 3 3 段,每段和的最大值最小为 6 6 6。
输入格式
第 1 1 1 行包含两个正整数 N , M N,M N,M。
第 2 2 2 行包含 N N N 个空格隔开的非负整数 A i A_i Ai,含义如题目所述。
输出格式
一个正整数,即每段和最大值最小为多少。
样例 #1
样例输入 #1
5 3
4 2 4 5 1
样例输出 #1
6
提示
对于 20 % 20\% 20% 的数据, N ≤ 10 N\leq 10 N≤10。
对于 40 % 40\% 40% 的数据, N ≤ 1000 N\leq 1000 N≤1000。
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 1 0 5 1\leq N\leq 10^5 1≤N≤105, M ≤ N M\leq N M≤N, A i < 1 0 8 A_i < 10^8 Ai<108, 答案不超过 1 0 9 10^9 109。
思路
二分二分二分,通过二分求值
AC代码
#include <bits/stdc++.h>
using namespace std;
int n,m,tot,k,l,r,a[100005];
bool check(int x,int a[]) {
for(int i=1; i<=n; i++)
if(tot+a[i]<=x) tot+=a[i];
else{
tot=a[i];
k++;
}
return k>=m;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) {
scanf("%d",&a[i]);
r+=a[i];
l=max(l,a[i]);
}
while(l<=r) {
int mid=(l+r)/2;
tot=0,k=0;
if(check(mid,a)) {
l=mid+1;
}
else {
r=mid-1;
}
}
cout<<l;
}