Leetcode 动态规划-64. Minimum Path Sum (Medium)

[[1,3,1],
 [1,5,1],
 [4,2,1]]
Given the above grid map, return 7. Because the path 1→3→1→1→1 minimizes the sum.

题目描述:求从矩阵的左上角到右下角的最小路径和,每次只能向右和向下移动。

我用的是复杂的方法O(n^2)

#include <bits/stdc++.h>

using namespace std;

int minPathSum(vector<vector<int> > &grid)
{
    int arr[grid.size()][grid[0].size()];
    arr[0][0] = grid[0][0];

    for(int i = 1;i<grid.size();i++)
    {
        arr[i][0] = arr[i-1][0] + grid[i][0];
    }

    for(int j = 1;j<grid[0].size();j++)
    {
        arr[0][j] = arr[0][j-1] + grid[0][j];
    }


    for(int i=1;i<grid.size();i++)
    {
        for(int j=1;j<grid[0].size();j++)
        {
            arr[i][j] = std::min(arr[i-1][j]+grid[i][j],arr[i][j-1]+grid[i][j]);
        }
    }
    return arr[grid.size()-1][grid[0].size()-1];
}

int main()
{
    int r,c,num;
    cin>>r>>c;

    vector <vector<int> > grid(r);

    //初始化一个r*c的二维数组
    for(int i = 0; i<grid.size();i++)
    {
        grid[i].resize(c);
    }

    for(int i=0;i<r;i++)
    {
        for(int j=0;j<c;j++)
        {
            cin>>num;
            grid[i][j] = num;
        }
    }

    int ans = minPathSum(grid);
    cout<<ans<<endl;

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值