GM(1,1)灰色预测模型

本文介绍了在数据量较少且无规律的情况下,如何运用灰色预测模型进行数列求解、灾害预测和拓扑预测。模型建立涉及构造累加数列、微分方程拟合和常数计算,通过级比检验和误差分析来评估模型性能。如果误差较大,需考虑更换模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、何时使用

数据量少且无显著规律(100年内的GDP就不可以用该模型)

例如:

1. 数列求解:定时求量,预测下一年的某个值

2.灾害预测:定量求时,预测下一次虫灾会出现的时间(本质还是数列求解,只是把超出阈值的值相对应的年份当成一个新的数列,再用法一求解)

3.拓扑预测:对数据波形进行预测,等于求解多个灾害预测(虫害分为重中轻三个级别,新生成了三个数列)

二、进一步判断是否可以使用灰色预测模型

!对原始数据进行级比检验,检验其可行性

若通过了,即可

若不通过,则尝试平移变换,即加上常熟c,看是否落在符合的区间之内,多次不符合,则就是不适合用灰色预测模型

三、建模过程

1. 构造累加数列制造其规律

原始数据无明显规律,累加后,大概率呈直线或者指数曲线分布(因此考虑用微分方程)

2.用微分方程拟合新数据(列出微分方程)

3.用最小二乘法来计算微分方程里面的常数值

注意:累加序列为了消除数据的随机性,取前后两次的平均值,即进行均值生成;

如何求解用线性代数的知识(插值与拟合)

4.求解微分方程

编程的时候注意,计算的是k+1而不是k

四、对模型的优劣进行检验

偏差越小,模型越好;否则换模型

1. 相对误差检验

2.级比偏差检验

所的结果若小于0.1,拟合非常好;

小于0.2,正常范围

多个数据大于0.2,换模型预测

详细公式看书本或者见ppt

5.

2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值