目录
0 介绍
先前,我们讨论了线性规划中的单纯形法。在单纯形法的标准型转化过程中,我们需要构建一个单位矩阵以作为初始基。当约束条件都是 “≤” 时,加入松弛变量就形成了初始基。
然而,在约束条件出现 ”=" 或 “≥” 时,则我们可能无法通过加入 剩余变量 构建单位矩阵了。详情见如下例子:
对于该线性规划,我们必须在左侧减去松弛变量来使其转化为标准型,而无法构建出单位矩阵。当初始基无法获得时,我们则可以采用大M法或者两阶段法。我们首先来谈谈大M法。
1 大M法
1.1 构造标准型规划模型
为了获得单位矩阵,我们需要在第一个式子中加上一个人工变量,第二个式子中加上一个人工变量
。
为使所加入的人工变量最终取值为0,我们需要令其人工变量的价值系数为-M(M为无限大的正数)。即如果人工变量不为零,目标函数不可能为最优。(如果人工变量最终没有被置换出基矩阵,则代表着这个问题没有可行解,也没有最优解。)
据此,我们对上式加入人工变量,获得的数学模型如下:
1.2 求解
1)初始单纯形表:
1 | -8 | 3 | 0 | -M | -M | ||||
b | |||||||||
-M | 2 | 1 | 2 | -1 | -1 | 1 | 0 | 2 | |
-M | 4 | 1 | -2 | 1 | 0 | 0 | 1 | 4 | |
1+2M | -8 | 3 | -M | 0 | 0 |
初次迭代结果:进基,
离基。
2)第二次迭代单纯形表:
1 | -8 | 3 | 0 | -M | -M | ||||
b | |||||||||
1 | 2 | 1 | 2 | -1 | -1 | 1 | 0 | — | |
-M | 2 | 0 | -4 | 2 | 1 | -1 | 1 | 1 | |
0 | -10-4M | 4+2M | 1+M | -1-2M | 0 |
第二次迭代结果: 进基,
离基。
3)第三次迭代单纯形表:
1 | -8 | 3 | 0 | -M | -M | ||||
b | |||||||||
1 | 3 | 1 | 0 | 0 | -1/2 | 1/2 | 1/2 | ||
3 | 1 | 0 | -2 | 1 | 1/2 | -1/2 | 1/2 | ||
0 | -2 | 0 | -1 | 1-M | -M-2 |
第二次迭代后,全部检验数≤0,该线性规划达到最优值。最终结果为:,
。