浅谈线性规划:No.3 单纯形法中的大M法(人工变量法)

 

目录

0 介绍       

1 大M法

1.1 构造标准型规划模型

 1.2 求解

0 介绍       

        先前,我们讨论了线性规划中的单纯形法。在单纯形法的标准型转化过程中,我们需要构建一个单位矩阵以作为初始基。当约束条件都是 “≤” 时,加入松弛变量就形成了初始基。
        然而,在约束条件出现 ”=" 或 “≥” 时,则我们可能无法通过加入 剩余变量 构建单位矩阵了。详情见如下例子:

   maxZ = {x}_1 - 8{x}_2 + 3{x}_3

   \left\{\begin{matrix} x_1 + 2x_2 - x_3 \geq 2\\ x_1 - 2x_2 + x_3 \geq 2\\ x_1, x_2, x_3\geq 0\\ \end{matrix}\right.

        对于该线性规划,我们必须在左侧减去松弛变量来使其转化为标准型,而无法构建出单位矩阵。当初始基无法获得时,我们则可以采用大M法或者两阶段法。我们首先来谈谈大M法。

1 大M法

1.1 构造标准型规划模型

        为了获得单位矩阵,我们需要在第一个式子中加上一个人工变量x_5,第二个式子中加上一个人工变量x_6

        为使所加入的人工变量最终取值为0,我们需要令其人工变量的价值系数为-M(M为无限大的正数)。即如果人工变量不为零,目标函数不可能为最优(如果人工变量最终没有被置换出基矩阵,则代表着这个问题没有可行解,也没有最优解。)

        据此,我们对上式加入人工变量,获得的数学模型如下:

maxZ = x_1 - 8x_2 +3x_3 + 0x_4 -Mx_5 -Mx_6

\left\{\begin{matrix} x_1 + 2x_2 - x_3 -x_4 + x_5= 2\\ x_1 - 2x_2 + x_3 + x_6= 4\\ x_1,x_2,x_3,x_4,x_5,x_6\geq 0\\ \end{matrix}\right.

1.2 求解

        1)初始单纯形表:

c_j1-830-M-M\theta_i
C_BX_Bbx_1x_2x_3x_4x_5x_6
-Mx_5212-1-1102
-Mx_641-210014
\sigma _j1+2M-83    -M   00

                 初次迭代结果:x_1进基,x_5离基。

        2)第二次迭代单纯形表: 

c_j1-830-M-M\theta_i
C_BX_Bbx_1x_2x_3x_4x_5x_6
1x_1212-1-110
-Mx_620-421-111
\sigma _j0-10-4M4+2M1+M-1-2M0

                第二次迭代结果:x_3 进基,x_6离基。

           3)第三次迭代单纯形表: 

c_j1-830-M-M\theta_i
C_BX_Bbx_1x_2x_3x_4x_5x_6
1x_13100-1/21/21/2
3x_310-211/2-1/21/2
\sigma _j0-20-11-M-M-2

                第二次迭代后,全部检验数≤0,该线性规划达到最优值。最终结果为:X = (3,0,1,0,0)^TZ = 12

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值