- 博客(185)
- 收藏
- 关注
原创 如何创建自己的Julia 包
开发包时,每次修改代码不需要重启 Julia!会自动写入到 Project.toml。有标准目录结构(src、test 等)之后修改 src 文件,会自动更新。你可以在其中添加自己的函数。(声明包名、依赖、版本)可以在 REPL 中。此时你正在开发本地包。
2025-12-08 19:10:39
555
原创 Julia REPL介绍
按 Backspace 或 Ctrl+C 返回主模式。按 Backspace 或 Ctrl+C 返回。这些是 Python 原生 REPL 做不到的。Pluto.jl(实时 notebook 环境)VS Code(配合 Julia 插件)因为它是 Julia 最强的交互工具。:读取你输入的 Julia 代码。:回到开头继续输入下一条命令。Julia REPL 有。Julia REPL 是。就是 REPL 在运行。:Julia 执行代码。中使用 Julia。
2025-12-08 15:54:27
380
原创 Julia常用函数
Julia 在数值计算方面比 Python 更接近 MATLAB,内建速度非常快,无需 NumPy。Julia 的矩阵性能非常强,因为直接调用 BLAS + LAPACK。(类似 Python 的 matplotlib)和。Julia 有多个绘图包,最常用的是。Julia 的输入需要使用。
2025-12-08 15:08:04
383
原创 论文阅读:农业喷雾无人机避障技术综述
在过去十年中,无人驾驶飞行器(UAV,又称无人机)已广泛应用于各种农业领域,如作物管理、作物监测、播种和农药喷洒等。尽管如此,自主性仍然是物联网(IoT)无人机系统面临的关键限制,尤其是在作为喷雾无人机使用时,需要捕获和预处理数据以实现可靠的实时障碍物检测和避撞。此外,由于通用无人机与喷雾无人机在目标和操作上存在差异,并非所有障碍物检测和避撞方法都适用于喷雾无人机。鉴于此,本文旨在综述农业喷雾无人机避障场景相关的所有分支领域的最新进展,包括喷雾无人机的结构细节。
2025-12-06 14:50:32
1079
原创 论文阅读:Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery
论文结构清晰,核心框架围绕农业机械自主导航的三大核心模块(定位与环境感知、路径规划、路径跟踪控制)展开,同时补充了技术挑战与未来展望。引言:阐述了全球人口增长与粮食安全需求下,自主导航技术作为智慧农业基石的重要性,介绍了其在耕种、播种、施肥、植保、收获等田间作业中的应用价值,明确了导航系统的三大核心组件及实际应用中面临的农田非结构化等挑战。定位与环境感知技术。
2025-12-04 16:39:42
938
原创 嵌入式系统中的人工智能代码生成:约束和解决方案
使用 HAL 和寄存器文档训练的 LLM 可以为 SPI、I2C、UART、PWM 和 GPIO 生成初始化代码,并具有正确的模式选择、时钟配置和引脚重新映射。这些系统本质上资源有限,必须遵守严格的安全、内存使用、实时响应能力和能源效率标准。虽然这在高级系统中可能是可以接受的,但在嵌入式固件中,使用静态缓冲区和轮询或具有明确定义的时序约束的中断驱动方法更合适。通过认识到嵌入式系统、内存紧张、确定性执行、特定于硬件的 API 和合规性要求的独特限制,开发人员可以利用人工智能辅助编码的真正潜力。
2025-10-21 21:10:59
821
原创 MODBUS 协议详细解读
术语英文核心定义关键参数 / 规则协议数据单元PDU应用层核心逻辑单元,与底层无关组成:功能码(1 字节)+ 数据域(n 字节)应用数据单元ADU底层传输单元,PDU + 附加域串行:地址域 + PDU+CRC/LRC;MODBUS 协议头MBAPTCP 环境下的 ADU 附加头,用于事务匹配7 字节:事务标识 (2)+ 协议标识 (2,0x0000)+ 长度 (2)+ 单元标识 (1)循环冗余校验CRCRTU 模式的帧差错校验。
2025-09-26 22:36:29
1557
原创 低功耗超宽带收发器:DW1000设备驱动API指南
SPIMOSI:微处理器→DW1000(发送寄存器地址、配置数据、TX 帧数据);SPIMISO:DW1000→微处理器(返回寄存器状态、RX 帧数据、设备 ID);SPICSn:微处理器→DW1000(片选信号,低电平有效,用于启动 SPI 传输);SPICLK:微处理器→DW1000(时钟信号,同步 SPI 数据传输,速率需按 API 要求配置)。功能。
2025-09-20 16:05:39
1268
原创 论文阅读:SE-VLN: A Self-Evolving Vision-Language Navigation Framework Based on Multimodal Large Language
近年来,视觉 - 语言导航(Vision-Language Navigation, VLN)领域的进展主要得益于新兴的大语言模型(Large Language Models, LLMs)。这些方法在指令理解和任务推理方面展现出优异的泛化能力,但受限于 LLMs 固定的知识库和推理能力,无法充分融合经验知识,导致缺乏高效的进化能力。为解决这一问题,本文借鉴自然智能体的进化能力,提出一种自进化 VLN 框架(SE-VLN),使 VLN 智能体在测试阶段具备持续进化的能力。
2025-09-18 21:32:40
809
原创 论文阅读:GOAT: GO to Any Thing
在家庭、仓库等部署场景中,移动机器人需能长时间自主导航,并无缝执行人类操作员可直观理解的指令所描述的任务。多模态(Multimodal):可处理通过类别标签、目标图像及语言描述指定的导航目标;终身式(Lifelong):能利用在同一环境中的过往经验提升性能;平台无关(Platform Agnostic):可快速部署于不同物理结构的机器人上。GOAT 的实现依赖于模块化系统设计与持续扩充的实例感知语义记忆。
2025-08-29 11:33:00
1307
原创 论文阅读:Gorilla: Large Language Model Connected with Massive APIs
大型语言模型(LLMs)已迎来令人瞩目的发展浪潮,如今在数学推理、程序合成等各类任务中均表现出色。然而,它们通过 API 调用有效使用工具的潜力尚未充分发挥。即便对于像 GPT-4 这样当今最先进的大型语言模型而言,这仍是一项极具挑战性的任务,主要原因在于它们不清楚可用的 API 有哪些,以及在频繁更新的工具集中如何使用这些 API。我们开发了 Gorilla,这是一款基于 LLaMA 模型微调而成的模型,其在编写 API 调用方面的性能超越了 GPT-4。
2025-08-27 11:44:01
988
原创 论文阅读:Code as Policies: Language Model Programs for Embodied Control
针对代码补全任务训练的大型语言模型(LLMs)已被证实能够从文档字符串(docstrings)中合成简单的 Python 程序。研究发现,这些具备代码编写能力的 LLM 可被重新赋能,在给定自然语言指令的情况下生成机器人策略代码。具体而言,策略代码能够表示处理感知输出(例如来自目标检测器的输出)并对控制原语 API 进行参数化的函数或反馈循环。
2025-08-25 20:44:00
1207
原创 论文阅读:Inner Monologue: Embodied Reasoning through Planning with Language Models
近年来的研究表明,大型语言模型(Large Language Models, LLM)的推理能力可应用于自然语言处理之外的领域,如机器人的规划与交互。这些具身任务要求智能体理解世界的诸多语义层面:可用技能库、这些技能如何影响世界,以及世界的变化如何映射回语言。在具身环境中进行规划的 LLM,不仅需要确定 “执行哪些技能”,还需明确 “如何执行” 与 “何时执行”—— 而这些答案会随着智能体自身的选择实时变化。本研究探索了在这类具身场景中,LLM 在无需任何额外训练的情况下,对自然语言形式反馈进行推理的能力。
2025-08-23 21:07:39
942
原创 论文阅读:Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
大型语言模型(LLM)能够编码丰富的世界语义知识,这类知识对于机器人执行自然语言表达的高层级、时间扩展指令具有重要价值。然而,语言模型的一大显著缺陷是缺乏现实世界经验,这使其难以在特定实体(如机器人)中用于决策。例如,让语言模型描述如何清理洒出的液体,可能会得到合理的叙述,但该叙述未必适用于特定智能体(如机器人)在特定环境中执行此任务的场景。本文提出通过预训练技能实现现实世界接地:利用预训练技能约束模型,使其提出既可行又符合上下文的自然语言动作。
2025-08-22 23:16:40
1362
原创 LLM+ROBOTICES笔记:Controlling Robots via Large Language Models
传统机器人编程依赖人工编写策略代码,难以灵活响应多样化自然语言指令。本研究提出一种框架,利用大语言模型(LLM)将人类指令转化为机器人可执行的策略代码。生成的代码整合感知 API(用于物体检测和状态推断,如识别空碗)和控制 API(用于抓取 - 放置等运动原语)。通过少样本提示,LLM 可递归定义未定义函数(如。
2025-08-21 12:27:33
983
原创 论文阅读:Prompt Optimization in Large Language Models
提示优化是提升大语言模型(Large Language Models, LLMs)下游任务性能的关键任务。本文中,提示被定义为从词汇表中选取的 n 元语法(n-grams)序列。因此,研究目标是筛选出在特定性能指标下最优的提示。提示优化可视为一个组合优化问题,其可能的提示数量(即组合搜索空间)等于词汇表大小(所有可能的 n 元语法数量)的提示长度次方。由于穷举搜索不切实际,亟需一种高效的搜索策略。
2025-08-19 10:25:45
1458
原创 论文阅读:Agricultural machinery automatic navigation technology
本文回顾、比较并分析了以往关于农业机械自动导航与路径规划技术的研究。首先,介绍了农业机械自动驾驶的基本组成部分,包括自动导航、路径规划、控制系统和通信模块。通常,自动导航技术可分为三类:全球导航卫星系统(GNSS)、机器视觉和激光雷达。本文总结并对比了不同方法的结构、优缺点及当前研究的技术难点。目前,较成功的方式是将 GNSS 与机器视觉结合,为农业机械避障和生成最优路径提供保障。
2025-08-12 11:54:10
1129
原创 论文阅读:ShizishanGPT: An Agricultural Large Language Model Integrating Tools and Resources
最近,大型语言模型(LLMs)的发展显著提升了智能对话系统处理复杂查询的能力。然而,当前的大型语言模型在专业领域知识方面仍存在局限性,尤其在农业等技术领域。为解决这一问题,我们提出了 ShizishanGPT—— 一种基于检索增强生成(RAG)框架和代理架构的农业智能问答系统。
2025-08-11 20:36:03
1094
原创 论文阅读:Farm-LightSeek: An Edge-centric Multimodal Agricultural IoT Data Analytics Framework with Light
在全球人口增长和气候变化带来的挑战下,传统农业物联网(IoT)系统正经历重大数字化转型,以促进高效的大数据处理。尽管智慧农业借助人工智能(AI)技术实现精准控制,但仍面临诸多显著挑战,包括过度依赖农业专家知识、多模态数据融合困难、对动态环境适应性差以及边缘端实时决策瓶颈。大型语言模型(LLMs)凭借其卓越的知识获取和语义理解能力,为解决这些挑战提供了极具前景的方案。为此,我们提出了 Farm-LightSeek—— 一个以边缘为中心的多模态农业物联网数据分析框架,该框架将大语言模型与边缘计算相结合。
2025-08-08 20:29:04
1405
原创 论文阅读:Large Language Models Empowered Autonomous Edge AI for Connected Intelligence
无线网络的演进正朝着互联智能的方向发展,这一概念构想在超连接的信息物理世界中实现人类、物体与智能之间的无缝互联。边缘人工智能(边缘 AI)是实现互联智能的一种很有前景的解决方案,它能在网络边缘提供高质量、低延迟且保护隐私的人工智能服务。本文提出了一种自主边缘人工智能系统的愿景,该系统利用大型语言模型(LLMs),即生成式预训练 Transformer(GPT)的强大能力,能够自动组织、适应和优化自身,以满足用户的多样化需求。
2025-08-07 16:42:34
970
原创 论文阅读: Mobile Edge Intelligence for Large LanguageModels: A Contemporary Survey
背景与动机云端 LLMs 存在隐私泄露、带宽成本高、延迟长等问题;设备端 LLMs 受限于资源,难以支持大规模模型和复杂任务。MEI 作为折中方案,通过边缘服务器提供 AI 能力,平衡计算资源、延迟和隐私需求,成为 6G 时代 LLMs 部署的关键方向。核心应用场景移动医疗:需低延迟处理敏感健康数据,符合隐私法规(如 GDPR);类人机器人:依赖实时响应(10-100ms 延迟)和本地化数据处理;虚拟助手:要求低延迟交互(<200ms)和用户数据隐私保护;自动驾驶。
2025-08-05 14:39:32
1149
原创 论文阅读(最新):RAG+: Enhancing Retrieval-Augmented Generation with Application-Aware Reasoning
检索增强生成(RAG)通过整合外部知识,已成为提升大型语言模型(LLMs)在知识密集型任务中性能的基础框架。然而,现有 RAG 范式往往忽视知识应用这一认知环节,导致检索到的事实与特定任务推理之间存在差距。在本研究中,我们提出 RAG+,这是一种原则性的、模块化的扩展框架,它将应用感知推理明确融入 RAG 流程。RAG + 构建了一个由知识和对齐的应用示例组成的双语料库(可通过人工或自动方式创建),并在推理过程中对两者进行联合检索。
2025-07-13 20:44:32
1117
原创 论文阅读:A Survey on RAG Meeting LLMs: Towards Retrieval-AugmentedLarge Language Models
作为人工智能领域最先进的技术之一,检索增强生成(RAG)能够提供可靠且最新的外部知识,为众多任务带来极大便利。尤其在人工智能生成内容(AIGC)时代,检索技术在提供额外知识方面的强大能力,使 RAG 能够辅助现有的生成式 AI 产出高质量结果。近年来,大型语言模型(LLMs)在语言理解与生成方面展现出革命性能力,但仍存在固有局限性,如幻觉现象和内部知识过时等问题。
2025-07-13 14:36:41
1160
原创 论文阅读:A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
提示工程已成为扩展大语言模型(LLMs)和视觉语言模型(VLMs)能力的不可或缺的技术。该方法利用称为提示的任务特定指令来提升模型效能,而无需修改核心模型参数。提示无需更新模型参数,仅通过给定提示引导模型产生所需行为,从而实现预训练模型与下游任务的无缝集成。提示可以是提供上下文以引导模型的自然语言指令,也可以是激活相关知识的学习向量表示。这一新兴领域已在从问答到常识推理的各种应用中取得成功。然而,目前缺乏对多样化提示工程方法和技术的系统性组织与理解。
2025-06-28 23:46:05
896
1
原创 论文阅读:A Survey on Large Language Models for Code Generation
大型语言模型(LLMs)在各种代码相关任务中取得了显著进【展,被称为代码 LLMs,尤其在从自然语言描述生成源代码的代码生成任务中表现突出。这一新兴领域因其在软件开发中的实际意义,如 GitHub Copilot,引起了学术研究人员和行业专业人士的极大兴趣。尽管从自然语言处理(NLP)或软件工程(SE)或两者的角度对 LLMs 进行了各种代码任务的积极探索,但缺乏专门针对代码生成 LLMs 的全面且最新的文献综述。
2025-06-25 21:46:44
1475
3
原创 论文阅读(最新):LiveCodeBench Pro: How Do Olympiad MedalistsJudge LLMs in Competitive Programming?
近期有报告称,大型语言模型(LLMs)在竞争性编程领域的表现已超越顶尖人类选手。本文借助一组国际算法竞赛奖牌得主的专业知识,重新审视这一论断,深入探究 LLMs 与人类专家的差异以及尚存的局限性。我们引入了 LiveCodeBench Pro 基准测试,该基准包含来自 Codeforces、ICPC 和 IOI 的问题,并持续更新以降低数据污染的可能性。一支由奥林匹克奖牌得主组成的团队为每个问题标注算法类别,并对模型生成的失败提交进行逐行分析。
2025-06-25 14:50:42
1124
1
原创 论文阅读:A Survey on Path Planning for Autonomous Ground Vehicles inUnstructured Environment
非结构化环境中的自动驾驶在农业、军事和采矿等各种应用中至关重要。然而,非结构化环境中的研究明显滞后于结构化环境,这主要是由于恶劣的环境条件以及车辆与地形之间复杂的相互作用所带来的挑战。本文首先将非结构化路径规划分为分层式和端到端式方法,然后重点综述了与结构化路径规划相比的特殊部分,如地形可通行性分析、成本估计和地形相关约束。本文全面综述了相关因素、车辆与地形的相互作用以及地形可通行性分析方法。重点总结了安全成本、能源成本和舒适成本的估计方法。此外,还讨论了由地形和车辆限制引起的约束。
2025-06-11 14:52:44
1111
1
原创 论文阅读:Path planning algorithms in the autonomous driving system: Acomprehensive review
本全面综述聚焦于自动驾驶系统(ADS),该系统旨在减少约占 95% 汽车事故原因的人为错误。ADS 由六个阶段组成:传感器、感知、定位、评估、路径规划和控制。我们阐述了每个阶段使用的主要先进技术,分析了 275 篇论文,其中 162 篇专门研究路径规划,因其复杂性、NP 难优化性质以及在 ADS 中的关键作用。本文将路径规划技术分为三大类:传统方法(基于图、基于采样、基于梯度、基于优化、插值曲线算法)、机器学习和深度学习方法,以及元启发式优化方法,详细介绍了它们的优缺点。
2025-06-09 16:07:24
1177
1
原创 论文阅读:KoMA: Knowledge-driven Multi-agent Frameworkfor Autonomous Driving with Large LanguageModel
大型语言模型(LLMs)作为自主智能体,为通过知识驱动的方式应对现实世界挑战提供了一条新途径。这些增强型 LLM 方法在泛化能力和可解释性方面表现卓越。然而,驾驶任务的复杂性往往需要多个异构智能体的协作,这凸显了此类由 LLM 驱动的智能体进行协作知识共享和认知协同的必要性。尽管 LLM 具有广阔前景,但当前应用主要集中在单智能体场景,这使其在面对复杂、相互关联的任务时应用范围受限。
2025-06-07 12:14:26
855
1
原创 论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。相比之下,端到端自动驾驶系统因其完全数据驱动的训练过程有望避免误差累积,但其 “黑箱” 特性往往导致透明度不足,使得决策的验证和追溯复杂化。最近,大型语言模型(LLMs)已展现出上下文理解、逻辑推理和生成答案等能力。一个自然的想法是利用这些能力为自动驾驶赋能。
2025-06-05 23:03:11
1412
1
原创 论文阅读:LLMs and IoT: A Comprehensive Survey onLarge Language Models and the Internet of Things
物联网(IoT)的迅速普及催生了高度互联的系统,这些系统集成了各种各样的设备。随着联网物联网设备数量的持续增长,这些设备产生的海量数据在收集、管理、分析和利用方面带来了巨大挑战,尤其是在大规模部署中。传统的数据处理方法往往难以应对这些环境的复杂性和实时性需求,因此需要先进的方法来实现高效的数据处理和智能交互。最近,大语言模型(LLMs)已成为增强物联网系统中自然且上下文感知交互的强大工具。它们在处理和分析大型数据集方面的能力使其能够进行有意义的对话、改进数据解释并更好地理解上下文。
2025-05-29 21:33:12
984
1
原创 论文阅读:Self-Planning Code Generation with Large Language Models
尽管大型语言模型(LLMs)在代码生成方面展现出了令人瞩目的能力,但它们在处理人类提供的复杂意图时仍然困难重重。众所周知,人类通常会在实施之前通过规划来分解复杂问题并安排解决步骤。为此,我们将规划引入代码生成,以帮助模型理解复杂意图并降低解决问题的难度。本文提出了一种基于大型语言模型的自规划代码生成方法,该方法包括两个阶段,即规划阶段和实现阶段。具体来说,在规划阶段,LLM 通过少样本提示从意图中规划出简洁的解决步骤。随后,在实现阶段,模型在前述解决步骤的指导下逐步生成代码。
2025-05-26 15:37:49
1678
1
原创 论文阅读:PURPLE: Making a Large Language Model a Better SQL Writer
大语言模型(LLM)技术在自然语言到 SQL(NL2SQL)翻译中扮演着越来越重要的角色。通过大量语料训练的 LLM 具有强大的自然语言理解能力和基本的 SQL 生成能力,无需针对 NL2SQL 任务进行额外调优。现有的基于 LLM 的 NL2SQL 方法试图通过增强 LLM 对用户意图的理解来改进翻译。然而,LLM 有时会因缺乏组织复杂逻辑运算符组合的知识而无法生成合适的 SQL。
2025-05-25 20:48:15
1216
1
原创 科研经验贴:AI领域的研究方向总结
由神经网络层(如卷积层、全连接层、Transformer 层)组成的架构,用于学习输入到输出的映射关系。: 用于训练、验证和测试模型的样本集合,通常包含输入特征(如图像、文本)和对应标签(如类别、回归值)。: 用于评估模型性能的量化指标,反映模型在特定任务上的效果(不同于损失函数,不一定可微)。: 衡量模型预测值与真实值之间的差距,作为训练过程中优化的目标函数。: 在特定数据集上的。
2025-05-23 16:48:20
804
原创 论文阅读:Next-Generation Database Interfaces:A Survey of LLM-based Text-to-SQL
由于用户问题理解、数据库模式解析和 SQL 生成的复杂性,从用户自然语言问题生成准确 SQL(Text-to-SQL)仍是一项长期挑战。传统的 Text-to-SQL 系统结合人工设计和深度神经网络已取得显著进展,随后预训练语言模型(PLM)在该任务上也实现了有前景的结果。然而,随着现代数据库和用户问题日益复杂,参数规模有限的 PLM 常生成错误 SQL,这需要更精细的定制化优化方法,从而限制了基于 PLM 系统的应用。
2025-05-21 22:25:03
1751
1
原创 论文阅读:Self-Collaboration Code Generation via ChatGPT
尽管大型语言模型(LLMs)在代码生成能力方面表现出色,但在处理复杂任务时仍存在挑战。在现实软件开发中,人类通常通过团队协作来应对复杂任务,这种策略能有效控制开发复杂度并提升软件质量。受此启发,本文提出一种基于 LLMs(以 ChatGPT 为例)的自协作代码生成框架。具体而言,通过角色指令:(1)多个 LLM 代理扮演不同的 “专家” 角色,每个角色负责复杂任务中的特定子任务;(2)指定协作和交互方式,使不同角色形成虚拟团队以协同完成工作,最终实现无需人工干预的代码生成任务。
2025-05-16 22:27:38
1377
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅