枚举算法
前言
枚举的概念就是把满足题目条件的所有情况都列举出来,然后一一判定,找到最优解的过程。
一、最值问题
两个数的最值问题
两个数的最小值,利用C语言中的三元运算符就可以实现:
int Min(int a, int b) {
return a < b ? a : b;
}
n个数的最值问题
当有 n 个数时 a i a_i ai 时,我们可以首先取前两个数,计算最小值;然后再拿这个最小值和第三个数去比较,得到的最小值再去和第四个数比较,以此类推,就可以计算出 n 个数中的最小值。
假设前 i 个数的最小值为
m
i
m_i
mi,则有递推公式如下:
m
i
=
{
a
i
i=0
M
i
n
(
m
i
−
1
,
a
i
)
i>0
m_i= \begin{cases} a_i &\text{i=0} \\ Min(m_{i-1},a_i) &\text{i>0} \end{cases}
mi={aiMin(mi−1,ai)i=0i>0
所以,把这个递推公式翻译成C语言,代码是这样的:
int Min(int a, int b) {
return a < b ? a : b;
}
int NMin(int* a, int n){
int *m = (int *) malloc( sizeof(int) * numsSize );
int m[0] = a[0];
for(int i = 1; i < n; ++i) {
m[i] = Min(m[i-1], a[i]);
}
int ret = m[n-1];
free(m);
return ret;
}
而这里的 m[i] 和 m[i-1] 可以利用迭代,存储在一个变量中,用 C语言实现如下:
int Min(int a, int b) {
return a < b ? a : b;
}
int NMin(int* a, int n){
int m = a[0];
for(int i = 1; i < n; ++i) {
m = Min(m, a[i]);
}
return m;
}
3、最值问题的下标
当然,有些时候,我们求的并不是一个最小的数,要是要求出这个数组中,最小的数的下标,那么可以直接记录下标,并且比较的时候直接通过下标去索引到值,然后进行比较,像这样:
int NMin(int* a, int n){
int mIdx = 0;
for(int i = 1; i < n; ++i) {
if( a[i] < a[mIdx] ) {
mIdx = i;
}
}
return mIdx;
}
基础概念练习:2656. K 个元素的最大和
二、最值问题的进阶
1、第三大的数
有时候,我们求最大的数不够,想要求次大的,甚至第三大的,比如 1 2 2 3 中第三大的是 1 (相同的数只计算一次)。
这样的问题,核心思路就是先把最大的求出来;然后忽略最大的数的情况下,再去求最大的;这时候就得到了次大的,再把次大的也忽略以后,再求最大的,自然就是第三大的了。
力扣414. 第三大的数
2、数组中两元素的最大乘积
要求找到数组中两个元素的最大乘积,数组元素一定是正数。那么我们知道最大的两个元素相乘一定是最大的,所以就是找最大的元素 和 次大的元素,但是这个问题和 第三大的数 略微有些不同,相同的数会被计算进去。
所以,我们找到最大的数以后,可以把它的下标忽略掉;然后再去找最大的数,这样找到的一定是两个可重复的最大元素和次大元素,将两者相乘即可。
当然有同学就要问了,那我是不是直接把数组按照递增排序,然后取最后两个元素相乘就可以了。是的,也可以,但是比较排序的最优时间复杂度为 O(nlogn),而找两次最大值的时间复杂度为 O(n)。
三、降维思想
一些统计类问题,第一个思路就是枚举所有情况(也就是多个 for 循环),然后再去考虑是不是能够把某些 for 循环的 O(n) 的时间复杂度降为 O(1),这个就是降维的思想。来看这个经典问题(ACM铜牌问题):
给你一个长度为 n (n ≤ 4000) 下标从 0 开始的整数数组 nums ,它包含 1 到 n 的所有数字,请你返回上升四元组的数目。如果一个四元组 (i, j, k, l) 满足以下条件,我们称它是上升的:
1)0 <= i < j < k < l < n 且
2)nums[i] < nums[k] < nums[j] < nums[l] 。
注意:上述的数组与元素的排序不是一一对应的。
1、 O ( n 4 ) O(n^4) O(n4)
首先,最坏时间复杂度的算法,相信大家都能想出来,就是枚举 i、j、k、l 四个变量,然后判断 nums 四个数的关系,进行统计累加,这种情况下,最坏的时间复杂度为 O ( n 4 ) O(n^4) O(n4),由于 n 为 4000。也就是相当于 n = 16000000 的数据量下,用 O ( n 2 ) O(n^2) O(n2) 的算法去求解问题,所以必然超时。
2、 O ( n 3 ) O(n^3) O(n3)
如果要用 O(n^3) 的算法求解,你会怎么去思考呢?
3、 O ( n 2 ) O(n^2) O(n2)
是的,由于 n 的范围限制, 就算你想出了 O ( n 3 ) O(n^3) O(n3) 的算法,还是过不了这个问题,我们需要继续想 O ( n 2 ) O(n^2) O(n2) 的算法。
算法思路如下:
1、首先,我们枚举 j 和 k,然后对所有满足 nums[j] > nums[k] 的下标对,执行下一步。
2、那么只要我们找到数组下标为 0 到 j-1 的数中,小于 nums[k] 的个数,记为 a(也就是所有满足条件的 i); 找到数组下标为 k+1 到 n-1 的数中,大于 nums[j] 的个数,记为 b(也就是所有满足条件的 l); 将 a * b 就是所有满足条件的 (i, l) 对,把所有的 (i, l) 数对累加,就是我们最后要求的答案了。
3、于是问题转变成了求 找到数组下标为 0 到 j-1 的数中,小于 nums[k] 的个数 和 找到数组下标为 k+1 到 n-1 的数中,大于 nums[j] 的个数;
4、定义两个辅助数组 less[4001][4001]
和 bigger[4001][4001]
,令 less[i][j]
表示前 i-1 个数中,小于 j 的数的个数;令 bigger[i][j]
表示 i 以后(不包括 i)的数中,大于 j 的数的个数。less 和 bigger 的含义类似,通过两个 for 循环 枚举求出 less 和 bigger。
5、最后,只要枚举 j 和 k,在满足 nums[j] > nums[k]
的条件下,累加 less[j][ nums[k] * bigger[k][nums[j]]
的和,就是我们要求的解了。
编码示例:2552. 统计上升四元组