Codeforces Round #739 (Div. 3) D. Make a Power of Two

该博客主要探讨了一个计算问题,即寻找一个整数n与其二进制表示的匹配最大数。通过遍历2的幂次并进行位匹配,找到最小的位交换次数。博客中提供了C++代码实现,并在循环中检查每个二进制位,计算匹配数并更新答案。这种方法适用于解决位操作和字符串匹配的问题。
摘要由CSDN通过智能技术生成

传送门

思路:

算出n与2的每个幂次方的最大匹配数即可,最好把2的0到61的幂全部匹配一次,否则可能会wa4.

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<math.h>
#include<vector>
using namespace std;
#define ll long long
ll a[64];
ll b[100];
ll c[100];
int arr[100][100];

int main()
{
	for(int i = 0; i <= 61; i++)
	{
		a[i] = pow(2,i);
	}
	int t;
	cin>>t;
	while(t--)
	{
		ll n;
		cin>>n;
		int cnt = 0;
		ll pos = n;
		while(n)
		{
			b[++cnt] = n%10;
			n/=10;
		}
		for(int i = 1; i <= cnt/2; i++)
		{
			swap(b[i], b[cnt-i+1]);
		}
		ll ans = 0x3f3f3f3f;
		for(int i = 0; i <= 61; i++)
		{
			ll now = a[i];
			int num = 0;
			while(now)
			{
				c[++num] = now%10;
				now/=10;
			}
			for(int j = 1; j <= num/2; j++)
			{
				swap(c[j], c[num-j+1]);
			}
			
			ll sum = 0,f = 0;
			for(int st = 1; st <= cnt; st++)
			{
				
				ll z = 0;
				int flag = st;
				if(b[st] == c[1])
				{
					for(int j = 1; j <= num; j++)
					{
						while(b[flag] != c[j])
						{
							flag++;
							if(flag > cnt)break;
						}
						if(flag > cnt)
						{
							break;
						}
						else
						{
							flag++;
							z++;
						}
					}
				}
				sum = max(sum,z);
				ans = min(ans, (cnt-sum)+num-sum);
			}
			
//			if(ans == 3)
//			{
//				cout<< a[i]<<"()"<<endl;
//			}
		}
		cout<<ans<<endl;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值