P1052 [NOIP2005 提高组] 过河

这篇博客介绍了如何使用动态规划和离散化策略解决一个青蛙过河的问题,其中青蛙需要跳过m个石子,目标是最少踩多少块石子。博主首先提出了暴力解法会超时,然后提出针对石子数量较少的情况采用离散化的方法。通过将两点距离大于某个阈值的石子减去特定值,博主实现了优化的动态规划解决方案,并给出了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门
在这里插入图片描述

题意:

青蛙想从0处到达L处,路上有m块石子,问最少踩多少块石子可以过河(可以踩石子之外的地方)。

思路:

暴力dp比较好想,这样做是O(l),l最大1e9,肯定超时。但这题石头少,可以考虑离散化。
离散化方案可以抽象成这样一个问题:有两个数i,i+1,从x开始,每次对x加i或者加(i+1),可以得到哪些数,然后会发现x+i*(i+1)之后的所有数都可以得到,于是我们将两点距离大于i*(i+1)的石子都减去i*(i+1),在这题上面,我们考虑st的做法,若两点距离大于st,则一直减小t倍距离直到两点距离小于t,但考虑到可能存在s==t的情况,我们再加t就好了。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define endl '\n'
ll a[110];
ll dp[110000];
map<int,int>vis;
ll New[110000];

int main()
{
	ll l;
	cin>>l;
	ll s,t,m;
	cin>>s>>t>>m;
	for(int i = 1; i <= m; i++)
	{
		cin>>a[i];
	}
	sort(a+1,a+1+m);
	ll L = 0;
	for(int i = 1; i <= m; i++)
	{
		if(a[i]-a[i-1] > s*t)
		{
			L+=(a[i]-a[i-1])%t+t;
			New[L]++;
		}
		else
		{
			L+=(a[i]-a[i-1]);
			New[L]++;
		}
	}
	for(int i = 0; i <= 100000; i++)dp[i] = 1110;
	dp[0] = 0;
	for(int i = 0; i <= L; i++)
	{
		for(int j = s; j <= t; j++)
		{
			dp[i+j] = min(dp[i]+New[i+j], dp[i+j]);
		}
	}
	ll ans = 1110;
	for(int i = L;i <= L+t-1; i++)ans = min(ans,dp[i]);
	cout<<ans<<endl;
}
### NOIP 2015 提高 跳石头 Python 解题思路 #### 动态规划求解最小踩石子数目 对于给定的独木桥长度以及青蛙跳跃距离范围,目标是最小化青蛙过河过程中踩到的石子数量。此问题可以通过动态规划来解决。 定义 `dp[i]` 表示到达第 `i` 块石子位置时所踩过的最少石子数[^3]。初始化数 `dp` 的大小为石子总数加一,并设定初始值均为无穷大(表示不可达),除了起点外设为零因为起始处无任何代价。 遍历每一个可能作为新一步起点的位置 `i` 和每一块可跳至的新位置 `j` ,更新 `dp[j]` 。具体来说,在每次尝试从某一点跃向另一点的过程中,如果该次跳跃有效,则比较当前记录下的最优方案与此次新增路径哪个更优并据此调整: ```python import sys def min_stones(n, m, stones): INF = float('inf') # 初始化dp表 dp = [INF] * n dp[0] = 0 for i in range(m): # 对于每一颗石子 for j in range(i + 1, n): # 尝试跳跃到后面所有的石子上去 distance = abs(stones[j] - stones[i]) if L >= distance >= D and dp[i] != INF: dp[j] = min(dp[j], dp[i] + 1) return min([val for idx,val in enumerate(dp) if stones[idx]>=L]) if any(stones>=L for stones in stones[m:]) else "无法完成" n, l, d, m = map(int, input().split()) stones_position = list(map(int, input().strip().split())) print(min_stones(n, l, d, m)) ``` 上述代码实现了基于动态规划算法计算最短路径的思想,其中 `min_stones()` 函数接收四个参数分别为:总共有多少块石子、独木桥全长、允许的最大单步跨度、已知存在几块固定不动的大石子;而输入部分则提供了这些数据的具体数值形式供调用者传入实际测试案例使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值