SICP 1.7-1.8 PLT Scheme实现

1.7 依然是求平方根,单要求更加精确

Exercise 1.7. The good-enough? test used in computing square roots will not be very effective for finding the square roots of very small numbers. Also, in real computers, arithmetic operations are almost always performed with limited precision. This makes our test inadequate for very large numbers. Explain these statements, with examples showing how the test fails for small and large numbers. An alternative strategy for implementing good-enough? is to watch how guess changes from one iteration to the next and to stop when the change is a very small fraction of the guess. Design a square-root procedure that uses this kind of end test. Does this work better for small and large numbers?




#lang racket
;;SICP 1.7
 
(define(square x)
  (* x x))
(define (sqrt-filter guess x)
  (if (newgood-enough? guess (import guess x))
      (import guess x)
      (sqrt-filter (import guess x)
                   x)))
;;define improve
(define (import guess x)
  (average guess (/ x guess)))
 
(define (average x y)
  (/ (+ x y) 2))
;;define good-enough
(define (good-enough? guess x)
  (< (abs (- (square guess) x)) 0.001))
 
;;define new good-enough
(define (newgood-enough? old-guess new-guess)
  (> 0.01
     (/ (abs (- new-guess old-guess))
        old-guess)))
;;test1
;;(sqrt-filter 1.0 20)
(define (sqrt x)
  (sqrt-filter 1.0 x))
;test
 
(sqrt 16)

1.8


首先,将题目给定的算式 x/y2+2y3


求立方根:


Newton's method for cube roots is based on the fact that if y is an approximation to the cube root of x, then a better approximation is given by the value Use this formula to implement a cube-root procedure analogous to the square-root procedure. (In section 1.3.4 we will see how to implement Newton's method in general as an abstraction of these square- root and cube-root procedures.)


#lang racket
;;SICP test 1.8
 
(define(square x)
  (* x x))
(define (sqrt-filter guess x)
  (if (good-enough? guess x)
      guess
      (sqrt-filter (improve guess x)
                   x)))
;;define good-enough
(define (good-enough? guess x)
  (< (abs (- (club guess) x)) 0.001))
;;define improve
(define (improve guess x)
  (/ (+ (/ x (square guess)) (* 2 guess))
     3))
;;define club
(define (club x)
  (* x x x))
;;test1
;;(sqrt-filter 1.0 20)
(define (sqrt x)
  (sqrt-filter 1.0 x))
;test
(sqrt 8)



(使用的语言是Scheme,但是CSDN不支持,所以写的c)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值