neural-style、chainer-fast-neuralstyle图像风格转换使用

本文介绍了如何使用neural-style和chainer-fast-neuralstyle进行图像风格转换。首先,详细阐述了在Windows 10系统上安装TensorFlow与运行neural-style的步骤,但由于CPU运行速度较慢,转而介绍Chainer框架。在安装Chainer过程中,提到了Anaconda的便利性以及遇到的问题及解决方法。在使用Chainer-fast-neuralstyle时遇到了ValueError,通过查阅资料找到了解决方案,并提供了预训练模型的链接。最后,提及了根据个人图片训练模型的可能性。
摘要由CSDN通过智能技术生成

neural-style 官方地址:这个是使用torch7实现的;torch7安装比较麻烦.我这里使用的是大神使用TensorFlow实现的https://github.com/anishathalye/neural-style

1. 安装
我的操作系统是win10,装了Anaconda,TensorFlow包是通过pip安装的,中间没什么可说的.具体看TensorFlow官网就可以了.
2. 使用

python neural_style.py --content <content file> --styles <style file> --output <output file>

把参数替换成自己的,运行这个语句就能跑起来,因为我的电脑的显卡不是NVIDIA的,只能用CPU跑,特别慢,一张图片跑了三个小时.出来的效果跟大神在github上给出的一样.
效果图
原图
风格图


由于上面的跑的太慢了,介绍一下下面这个快速生成风格图:地址:https://github.com/yusuketomoto/chainer-fast-neuralstyle

这个需要安装Chainer 框架,官方的文档上不推荐使用windows系统,不过我装上去测试了一下也没什么问题.

  1. 安装
    这里要安利一下Anaconda,对使用Python做数据挖掘,深度学习等,真的是非常方便,如果你没有安装这个框架需要按照官方的文档把Chainer一来的几个库都安装一下,具体的自己百度吧.(我在自己的Ubuntu虚拟机上安装Pillow库的时候就怎么也装不上,后来按照这个链接http://www.jianshu.com/p/c83e7a599eea解决了)
  2. 使用
    这里重点说一下,我运行之后报:ValueError: test argument is not supported anymore. Use chainer.using_config这个错误,百度了一圈也找不到问题,后来去看了一下这个仓库的issues,上面有人说
    问题解决
    看了半天在generate.py没找到在哪去掉test,仔细看了一下报错的位置发现是在net.py里面
import math

import numpy as np
import chainer
import chainer.links as L
import chainer.functions as F
from chainer import Variable

class ResidualBlock(chainer.Chain):
    def __init__(self, n_in, n_out, stride=1, ksize=3):
        w = math.sqrt(2)
        super(ResidualBlock, self).__init__(
            c1=L.Convolution2D(n_in, n_out, ksize, stride, 1, w),
            c2=L.Convolution2D(n_out,
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值