poj 1201 Intervals [差分约束]

题意:给出n段区间,每个区间后给出一个整数ci,求一个整数集Z,要求Z中的数在闭区间[ai, bi]内的个数不小于ci个,输出集合Z最少元素个数。

思路:用S[i] 表示集合Z中小于等于i的元素个数

约束条件:1. S[bi] - S[ai] >= ci;  2. S[i] - S[i-1] <= 1;  3.S[i] - S[i-1] >= 0; 以mx表示所有区间右端点的最大值,mn表示所有区间左端点的最小值,最后所求结果即为dist[mx] - dist[mn - 1]。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;

#define M 50005
#define INF 0x3f3f3f3f
#define mem(a) memset(a, 0, sizeof(a))

struct node
{
    int to, w;
};

vector<node> arr[M];

int mx, mn;
int dist[M], vis[M], cnt[M];

int SPFA(int v0)
{
    //cout << mx << "  " << mn << "  " << mx - mn + 2 << endl;
    for (int i = mn - 1; i <= mx; i++)
    {
        dist[i] = INF;
    }
    dist[v0] = 0;
    mem(vis); mem(cnt);
    vis[v0]++; cnt[v0]++;
    queue<int> q;
    q.push(v0);
    while (!q.empty())
    {
        int temp = q.front();
        q.pop();
        vis[temp]--;
        for (int i = 0; i < arr[temp].size(); i++)
        {
            int v = arr[temp][i].to;
            if (dist[v] > dist[temp] + arr[temp][i].w)
            {
                dist[v] = dist[temp] + arr[temp][i].w;
                if (!vis[v])
                {
                    cnt[v]++;
                    //cout << v << "  " << cnt[v] << endl;
                    if (cnt[v] > mx - mn + 2)
                        return 1;
                    vis[v]++;
                    q.push(v);
                }
            }
        }
    }
    return 0;
}

int main()
{
    int n;
    while (cin >> n)
    {
        mx = -INF; mn = INF;
        for (int i = 1; i <= n; i++)\
        {
            int a, b, w;
            scanf("%d %d %d", &a, &b, &w);
            node temp;
            temp.to = a-1;
            temp.w = -w;
            arr[b].push_back(temp);
            if (a < mn)
                mn = a;
            if (b > mx)
                mx = b;
        }
        for (int i = mn; i <= mx; i++)
        {
            node temp;
            temp.to = i;
            temp.w = 1;
            arr[i - 1].push_back(temp);
            temp.to = i - 1;
            temp.w = 0;
            arr[i].push_back(temp);
        }
        int t = SPFA(mx);
        if (!t)
        {
            cout << -dist[mn - 1] << endl;
        }
        else//题目给出的条件不会出现负回路,所以这句可以不要
            cout << "ERROR" << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值