poj 1364 King[差分约束]

题目大意:有一个序列。给定一些约束条件,格式为si、ni、oi、ki,意思是序列中第si项到第si+ni项的和>(或<)ki,oi表示>(用"gt”表示)或<(用"lt"表示)。问这样的序列是否存在。存在输出"lamentable kingdomi",否则输出"successful conspiracy"。

思路:简单的差分约束,就是题目描述有点不太好懂,还有就是,题目给出的是>,<,要把它转化成>=,<=。需要注意,虽然序列长度为n,但是建图的时候用来第0项,相当于序列长度变为了n+1,所以bellman算法要循环n次!

#include<queue>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

#define M 110
#define INF 0x3f3f3f3f

struct node
{
    int u, v, w;
}edge[M];

int n, m;
int mx, mn;
int dist[M];

void bellman_ford()
{
    memset(dist, 0, sizeof(dist));
    for (int i = 1; i <= n; i++)//循环n次!
    {
        for (int i = 0; i <= m; i++)
        {
            int a = edge[i].u, b = edge[i].v;
            if (dist[a] < INF && dist[b] > dist[a] + edge[i].w)
            {
                dist[b] = dist[a] + edge[i].w;
            }
        }
    }
}

int main()
{
    while (cin >> n, n)
    {
        cin >> m;
        //mx = -INF; mn = INF;
        for (int i = 1; i <= m; i++)
        {
            int a, b, k;
            string c;
            cin >> a >> b >> c >> k;
            if (c == "gt")
            {
                k++;
                edge[i].u = a + b;
                edge[i].v = a - 1;
                edge[i].w = -k;
            }
            else
            {
                k--;
                edge[i].u = a - 1;
                edge[i].v = a + b;
                edge[i].w = k;
            }
        }
        bellman_ford();
        int flog = 0;
        for (int i = 1; i <= m; i++)
        {
            int a = edge[i].u, b = edge[i].v;
            if (dist[a] < INF && dist[b] > dist[a] + edge[i].w)
            {
                flog = 1;
                break;
            }
        }
        if (flog)
        {
            printf("successful conspiracy\n");
        }
        else
            printf("lamentable kingdom\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值