bert学习

本文深入探讨了BERT模型的运作机制,包括如何将文本转化为token ID,attention mask的作用,以及不同层级输出的特性。特别关注了[CLS]向量在分类任务中的应用和hidden-state向量在实体识别中的价值。
摘要由CSDN通过智能技术生成

bert本质上提供了一个词

1.token进行分词

2.token convert-id()输出每个词的id

3.attentionmask 进行mask

4.bert的不同层的输出效果不一样

[cls]向量用来做分类任务

hidden-state 向量可以用来做实体识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值