1.论文标题: Generative Image Dynamics
论文作者:
Zhengqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski (Google Research)
论文链接:
https://arxiv.org/pdf/2309.07906
内容简介:
提出了一种创新方法,用于从单张RGB图像中生成自然振荡动态,如树木、花朵和衣物随风摆动。研究者们通过学习真实视频序列中提取的运动轨迹,在傅里叶域中建立一个称为“光谱体积”的密集、长期运动表示。利用这一表示,结合扩散模型,可以从单张图像预测出整个视频的运动纹理,进而通过图像基础渲染技术生成动画。该方法不仅能创建无缝循环视频,还能实现用户与真实图像中对象的交互式动态模拟,显著提升了从静态图像生成动态内容的逼真度和应用范围。
方法论:
作者提出了一种基于图像空间先验的场景运动建模方法。
该先验从真实视频序列中提取的运动轨迹中学习得到,并在傅里叶域中将长期运动建模为光谱体积(spectral volumes),这种表示方法适合于扩散模型进行预测。给定单张图像,训练好的模型使用频率协调的扩散采样过程来预测光谱体积,然后可以将其转换为跨越整个视频的运动纹理。
光谱体积:光谱体积是一种运动表示方法,它将每个像素的运动轨迹表示为频域中的复数傅里叶系数。这种方法对于表现出振荡动态的场景非常适用,如风中的树木和花朵。作者发现,这种表示方法也非常适合作为扩散模型