解读CVPR2024-论文分享|TransNeXt: Robust Foveal Visual Perception for Vision 面向视觉Transformer的鲁棒性中央凹视觉感知

论文标题

TransNeXt: Robust Foveal Visual Perception for Vision Transformers

TransNeXt:面向视觉Transformer的鲁棒性中央凹视觉感知

论文链接:

https://arxiv.org/abs/2311.17132

论文作者

Dai Shi (daishiresearch@gmail.com)

内容简介

这篇论文提出了一种新的基于视觉变换器(Vision Transformers,简称ViT)的模型,名为TransNeXt,旨在解决现有ViT模型在信息混合和深度退化方面的问题。TransNeXt通过模拟生物视觉系统,特别是人类视网膜视觉和眼球连续运动,来增强模型的全局感知能力。此外,TransNeXt还引入了可学习的令牌(tokens)与常规查询(queries)和键(keys)进行交互,进一步增强了亲和力矩阵的生成。TransNeXt在多个视觉任务中表现出色,包括图像分类、目标检测和语义分割,并在多个模型尺寸下实现了最先进的性能。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值