论文标题
TransNeXt: Robust Foveal Visual Perception for Vision Transformers
TransNeXt:面向视觉Transformer的鲁棒性中央凹视觉感知
论文链接:
https://arxiv.org/abs/2311.17132
论文作者
Dai Shi (daishiresearch@gmail.com)
内容简介
这篇论文提出了一种新的基于视觉变换器(Vision Transformers,简称ViT)的模型,名为TransNeXt,旨在解决现有ViT模型在信息混合和深度退化方面的问题。TransNeXt通过模拟生物视觉系统,特别是人类视网膜视觉和眼球连续运动,来增强模型的全局感知能力。此外,TransNeXt还引入了可学习的令牌(tokens)与常规查询(queries)和键(keys)进行交互,进一步增强了亲和力矩阵的生成。TransNeXt在多个视觉任务中表现出色,包括图像分类、目标检测和语义分割,并在多个模型尺寸下实现了最先进的性能。