深度学习必读经典论文|ImageNet Classification with Deep Convolutional Neural Networks

论文标题

ImageNet Classification with Deep Convolutional Neural Networks

论文下载

ImageNet Classification with Deep Convolutional Neural Networks下载

论文作者

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

内容简介

这篇论文介绍了一种大型深度卷积神经网络(CNN),用于在ImageNet LSVRC-2010比赛中对1.2百万高分辨率图像进行分类,这些图像涵盖了1000个不同的类别。

该网络在测试数据上实现了37.5%的top-1错误率和17.0%的top-5错误率,显著优于之前的最佳水平。网络包含6000万参数和650,000个神经元,由五个卷积层组成,其中一些后接最大池化层,以及三个全连接层,最后是一个1000路softmax输出。

为了加快训练速度,作者使用了非饱和神经元和高效的GPU实现的卷积操作。为了减少全连接层的过拟合,他们采用了一种称为“dropout”的正则化方法。此外,他们还在ILSVRC-2012比赛中提交了这个模型的变体,并取得了15.3%的获胜top-5测试错误率。

方法分点说明

1.数据集和问题规模

  • 使用了ImageNet数据集,包含超过1500万个标记的高分辨率图像,分为约22,000个类别。
  • 特别关注ILSVRC-2010和ILSVRC-2012子集,每个类别大约有1000张图像。

2.网络架构

  • 网络包含五个卷积层和三个全连接层,最终输出通过1000路softmax进行分类。
  • 卷积层使用了非饱和的ReLU激活函数,以加快训练速度。
  • 网络设计中包含了多个新颖或不寻常的特性,如局部响应归一化(Local Response Normalization)和重叠池化(Overlapping Pooling)。

3.训练加速和效率

  • 利用GPU进行卷积操作的高效实现,显著加快了训练速度。
  • 通过在两个GPU上并行训练,解决了单个GPU内存限制的问题。

4.正则化技术

  • 为了减少过拟合,采用了“dropout”技术,即在训练过程中随机丢弃一部分神经元的输出。
  • 还使用了数据增强技术,包括图像平移、水平反射和RGB通道强度的变化。

实验结果

  • 在ILSVRC-2010测试集上,网络实现了37.5%的top-1错误率和17.0%的top-5错误率。
  • 在ILSVRC-2012比赛中,通过平均五个类似CNN的预测,错误率降低到了16.4%。

网络深度的重要性

论文强调了网络深度对于性能的重要性,移除任何一个卷积层都会导致性能下降。

未来方向

作者提出,尽管网络规模已经很大,但仍有潜力通过扩大网络规模和训练更长时间来进一步提升性能。

他们期望将来能够将这种大型深度CNN应用于视频序列,利用视频中的时间结构信息。

深度学习必读论文合集:

深度学习论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值