CV-visiontransformer经典论文解读|RepViT: Revisiting Mobile CNN From ViT PerspectiveRepViT:从ViT视角重新审视移动CNN

论文标题

RepViT: Revisiting Mobile CNN From ViT Perspective

RepViT:从ViT视角重新审视移动CNN

论文链接

RepViT: Revisiting Mobile CNN From ViT Perspective论文下载

论文作者

Ao Wang, Hui Chen, Zijia Lin, Jungong Han, Guiguang Ding

内容简介

本文探讨了如何从视觉变换器(ViT)的角度重新设计轻量级卷积神经网络(CNN),以提高其在移动设备上的性能和效率。研究者们通过将轻量级ViT的高效架构设计整合到标准的轻量级CNN(如MobileNetV3)中,提出了一种新的轻量级CNN家族——RepViT。

实验表明,RepViT在各种视觉任务中均优于现有的轻量级ViT模型,并在iPhone 12上实现了超过80%的top-1准确率和1.0 ms的延迟。此外,RepViT与SAM结合后,其推理速度比MobileSAM快近10倍。

关键点

1.背景与动机

轻量级ViT在移动设备上表现出色,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值