论文标题
RepViT: Revisiting Mobile CNN From ViT Perspective
RepViT:从ViT视角重新审视移动CNN
论文链接
RepViT: Revisiting Mobile CNN From ViT Perspective论文下载
论文作者
Ao Wang, Hui Chen, Zijia Lin, Jungong Han, Guiguang Ding
内容简介
本文探讨了如何从视觉变换器(ViT)的角度重新设计轻量级卷积神经网络(CNN),以提高其在移动设备上的性能和效率。研究者们通过将轻量级ViT的高效架构设计整合到标准的轻量级CNN(如MobileNetV3)中,提出了一种新的轻量级CNN家族——RepViT。
实验表明,RepViT在各种视觉任务中均优于现有的轻量级ViT模型,并在iPhone 12上实现了超过80%的top-1准确率和1.0 ms的延迟。此外,RepViT与SAM结合后,其推理速度比MobileSAM快近10倍。
关键点
1.背景与动机:
轻量级ViT在移动设备上表现出色,