论文标题
MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images
MVSplat:从稀疏多视图图像高效生成 3D 高斯 splatting
论文链接
MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images论文下载
论文作者
Dony Chen, Chuanxia Zheng, et al.
内容简介
本文介绍了一种名为 MVSplat 的高效模型,该模型能够从稀疏多视图图像中预测干净的前馈 3D 高斯分布。通过平面扫描构建代价体表示,利用跨视图特征相似性为深度估计提供几何线索,同时学习其他高斯基元参数。MVSplat 在 RealEstate10K 和 ACID 基准测试中实现了最先进的性能,并拥有最快的正向推理速度(22 fps)。与最新的最先进方法 pixelSplat 相比,MVSplat 使用的参数少 10 倍,推理速度快 2 倍以上,同时提供更高的外观和几何质量以及更好的跨数据集泛化能力。
分点关键点
1.代价体表示
通过平面扫描构建代价体,存储跨视图特征相似性,