ECCV2024论文解读|MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images从稀疏多视图图像高效生成 3D高斯

论文标题

MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images
MVSplat:从稀疏多视图图像高效生成 3D 高斯 splatting

论文链接

MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images论文下载

论文作者

Dony Chen, Chuanxia Zheng, et al.

内容简介

本文介绍了一种名为 MVSplat 的高效模型,该模型能够从稀疏多视图图像中预测干净的前馈 3D 高斯分布。通过平面扫描构建代价体表示,利用跨视图特征相似性为深度估计提供几何线索,同时学习其他高斯基元参数。MVSplat 在 RealEstate10K 和 ACID 基准测试中实现了最先进的性能,并拥有最快的正向推理速度(22 fps)。与最新的最先进方法 pixelSplat 相比,MVSplat 使用的参数少 10 倍,推理速度快 2 倍以上,同时提供更高的外观和几何质量以及更好的跨数据集泛化能力。

分点关键点

1.代价体表示

通过平面扫描构建代价体,存储跨视图特征相似性,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值