论文标题
Towards Fairer Centroids in k-means Clustering
面向更公平的 k 均值聚类中心
论文链接
Towards Fairer Centroids in k-means Clustering论文下载
论文作者
Stanley Simoes, Deepak P, Muiris MacCarthaigh
内容简介
本文提出了一种新的聚类级质心公平性(Cluster-level Centroid Fairness, CCF)概念,旨在解决传统 k 均值聚类中不同群体在聚类中心代表性上的不公平问题。作者通过引入 Fair-Centroid 方法,专注于提升每个聚类中最不利群体的代表性,从而实现更公平的聚类结果。该方法通过迭代优化框架实现,能够在保持聚类质量的同时显著降低群体间的代表性差异。实验结果表明,Fair-Centroid 在真实数据集上表现出色,为公平聚类提供了一种新的解决方案。
分点关键点
1.聚类级质心公平性(CCF)
提出了一种新的公平性概念,专注于每个聚类内部群体的代表性公平性,而非传统的数据集整体公平性。通过量化每个聚类中群体的代表性差异,CCF 能够更细致地捕捉聚类内的不公平性。