论文标题
Concealing Sensitive Samples against Gradient Leakage in Federated Learning 联邦学习中对抗梯度泄露的敏感样本隐藏
论文链接
Concealing Sensitive Samples against Gradient Leakage in Federated Learning论文下载
论文作者
Jing Wu, Munawar Hayat, Mingyi Zhou, Mehrtash Harandi
内容简介
本文探讨了联邦学习(FL)在模型反演攻击下的隐私漏洞,攻击者可以通过窃听共享的梯度信息重建用户的私有数据。研究假设,攻击成功的关键在于随机优化过程中每个数据的梯度之间的低纠缠性。为此,提出了一种简单而有效的防御策略,通过合成隐藏样本来模糊敏感数据的梯度,同时确保这些样本在视觉上与实际敏感数据不同。实证评估表明,该技术在保护隐私的同时,能够保持FL的性能,提供了比现有防御方法更强的保护。
分点关键点
-
模型反演攻击的脆弱性
- 研究表明,模型反演攻击利用了随机优化过程中数据点梯度之间的低纠缠性,攻击者可以通过共享的梯度信息重建用户的私有数据。这种脆弱性使得FL在隐私保护方面面临重大挑战。
-
合成隐藏样本的防御策略
- 本文提出了一种防御策略,通过合成隐藏样本来模糊敏感数据的梯度。这些隐藏样本在梯度层面上与敏感数据相