论文标题
Sim2Real-Fire: A Multi-modal Simulation Dataset for Forecast and Backtracking of Real-world Forest Fire
Sim2Real-Fire: 用于现实世界森林火灾预测和回溯的多模态模拟数据集
论文链接
论文作者
Yanzhi Li, Keqiu Li, Guohui Li, Zumin Wang, Changqing Ji, Lubo Wang, Die Zuo, Qing Guo, Feng Zhang, Manyu Wang, Di Lin
内容简介
本文提出了Sim2Real-Fire数据集,旨在通过模拟野火场景来训练人工智能模型,以实现对现实世界森林火灾的预测和回溯。该数据集包含100万个模拟场景,涵盖多模态环境信息,能够有效捕捉火势蔓延模式。为测试AI模型的性能,研究团队还准备了1000个真实世界的野火场景。文章中提出的深度变换器模型S2R-FireTr在考虑多模态环境信息方面表现出色,超越了现有的最先进方法。研究表明,利用模拟数据可以有效缩小Sim2Real差距,从而提高火灾预测和回溯的准确性。