论文标题
A Fixed-Point Approach to Unified Prompt-Based Counting 基于统一提示的计数的定点方法
论文链接
A Fixed-Point Approach to Unified Prompt-Based Counting论文下载
论文作者
Wei Lin, Antoni B. Chan
内容简介
本文提出了一种统一的基于提示的计数框架,旨在通过多种提示类型(如框、点和文本)生成目标对象的密度图。现有的类别无关计数模型通常依赖于单一类型的提示,限制了其适用性和迁移能力。为了解决这一问题,本文首先将不同模态的提示转换为提示掩码,而无需训练。然后,这些掩码被集成到一个类别无关的计数方法中,以预测密度图。此外,本文引入了一种固定点推理及其相关损失函数,以提高计数精度,且不引入新参数。通过理论和实验验证,该方法在多个类别无关数据集上表现出色,并在跨数据集自适应任务中展现出优越性能。
分点关键点
-
统一的基于提示的计数框架
- 本文提出的框架能够处理三种类型的提示(框、点和文本),并将其转换为语义掩码进行计数。这种方法消除了对特定类别的依赖,增强了模型的通用性和适用性。
- 本文提出的框架能够处理三种类型的提示(框、点和文本),并将其转换为语义掩码进行计数。这种方法消除了对特定类别的依赖,增强了模型的通用性和适用性。