AAAI 2025 | OmniCount:基于语义 - 几何先验的多标签目标计数

论文信息

题目:OmniCount: Multi-label Object Counting with Semantic-Geometric Priors
OmniCount:基于语义 - 几何先验的多标签目标计数
作者:Anindya Mondal, Sauradip Nag, Xiatian Zhu, Anjan Dutta
源码:https://mondalanindya.github.io/OmniCount

论文创新点

  1. 提出全新多标签计数模式:论文提出的OmniCount,推动了多标签目标计数发展,绕过传统对目标检测和语义分割模型的依赖,解决了诸如计数过多和计数不足等常见精度问题,实现了更高效的多标签目标计数。
  2. 构建新颖且实用的框架:引入了名为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值