论文标题
Boosting Adversarial Transferability across Model Genus by Deformation-Constrained Warping 通过变形约束扭曲增强模型属间对抗性迁移性
论文链接
Boosting Adversarial Transferability across Model Genus by Deformation-Constrained Warping论文下载
论文作者
Qinliang Lin, Cheng Luo, Zenghao Niu, Xilin He, Weicheng Xie, Yuanbo Hou, Linlin Shen, Siyang Song
内容简介
本文提出了一种新颖的对抗攻击策略,称为变形约束扭曲攻击(DeCoWA),旨在增强对抗样本在不同模型属之间的迁移性。传统的对抗样本在未知目标系统中通常表现出有限的迁移性,尤其是在代理模型与目标模型属于不同类型时。DeCoWA通过弹性变形增强输入样本的局部细节,并采用自适应控制策略来约束变形的强度和方向,从而避免全局语义的严重扭曲。实验结果表明,DeCoWA在多种任务(如图像分类、视频动作识别和音频识别)中显著提高了对抗样本的迁移性,能够有效地削弱不同模型之间的性能差异。
分点关键点
-
对抗样本的迁移