AAAI论文解读|Boosting Multiple Instance Learning Models for Whole Slide Image Classification A Model

论文标题

Boosting Multiple Instance Learning Models for Whole Slide Image Classification: A Model-Agnostic Framework Based on Counterfactual Inference 增强多示例学习模型以进行全幻灯片图像分类:基于反事实推理的模型无关框架

论文链接

Boosting Multiple Instance Learning Models for Whole Slide Image Classification: A Model-Agnostic Framework Based on Counterfactual Inference论文下载

论文作者

Weiping Lin, Zhenfeng Zhuang, Lequan Yu, Liansheng Wang

内容简介

本文提出了一种新颖的模型无关框架,旨在增强现有的多示例学习(MIL)模型,以提高全幻灯片图像(WSI)分类的性能。该框架结合了基于反事实推理的子包评估方法和层次化实例搜索策略,旨在从大量实例中筛选出可靠的实例并生成准确的伪标签。通过训练实例分类器,生成的实例嵌入被用作提示,以细化实例特征,从而提升包预测的准确性。实验结果表明,该方法在多个数据集上均优于现有的最先进方法,展示了其在包级和实例级预测任务中的竞争力。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值