论文标题
Boosting Multiple Instance Learning Models for Whole Slide Image Classification: A Model-Agnostic Framework Based on Counterfactual Inference 增强多示例学习模型以进行全幻灯片图像分类:基于反事实推理的模型无关框架
论文链接
论文作者
Weiping Lin, Zhenfeng Zhuang, Lequan Yu, Liansheng Wang
内容简介
本文提出了一种新颖的模型无关框架,旨在增强现有的多示例学习(MIL)模型,以提高全幻灯片图像(WSI)分类的性能。该框架结合了基于反事实推理的子包评估方法和层次化实例搜索策略,旨在从大量实例中筛选出可靠的实例并生成准确的伪标签。通过训练实例分类器,生成的实例嵌入被用作提示,以细化实例特征,从而提升包预测的准确性。实验结果表明,该方法在多个数据集上均优于现有的最先进方法,展示了其在包级和实例级预测任务中的竞争力。