AAAI2024论文合集解读|GAMC An Unsupervised Method for Fake News Detection using Graph Autoencoder

论文标题

GAMC: An Unsupervised Method for Fake News Detection Using Graph Autoencoder with Masking GAMC:一种基于图自编码器和掩码的无监督假新闻检测方法

论文链接

GAMC: An Unsupervised Method for Fake News Detection Using Graph Autoencoder with Masking论文下载

论文作者

Shu Yin, Peican Zhu, Lianwei Wu, Chao Gao, Zhen Wang

内容简介

随着社交媒体的兴起,假新闻的传播已成为一个重大问题,可能误导公众认知并影响社会稳定。尽管深度学习方法(如CNN、RNN和基于Transformer的模型如BERT)在假新闻检测中取得了一定进展,但它们主要关注内容而忽视了新闻传播过程中的社会背景。为了解决这一问题,本文提出了一种名为GAMC的无监督假新闻检测方法,利用图自编码器与掩码和对比学习相结合。GAMC通过对原始新闻传播图进行数据增强,生成增强图并进行编码和重建,最终通过复合损失函数来优化模型。实验结果表明,GAMC在真实数据集上优于现有的无监督方法,展示了其在假新闻检测中的有效性。
在这里插入图片描述

分点关键点

  1. GAMC方法概述
    • GAMC是一种无监督的假新闻检测技术,结合了图自编码器、掩码和对比学习。该方法通过利用新闻传播的上下文和内容作为自监督信号,减少了对标记数据集的依赖。

在这里插入图片描述

  1. 数据增强策略

    • GAMC首先对原始新闻传播图进行数据增强,包括随机节点特征掩蔽和边删除。这些增强图用于后续的特征重建和对比任务,确保模型在复杂传播模式下的有效性。
  2. 图编码与解码

    • 使用图同构网络(GIN)对增强图进行编码,生成潜在表示向量。解码器将这些潜在表示映射回输入空间,生成重建特征矩阵,以便进行假新闻分类。
  3. 复合损失函数

    • GAMC设计了一个复合损失函数,包括重构损失和对比损失。重构损失确保重建特征矩阵与原始特征矩阵的相似性,而对比损失则最小化来自同一传播图的两个重建图之间的差异。

在这里插入图片描述

  1. 实验验证
    • 在真实数据集上的实验表明,GAMC优于现有的无监督假新闻检测方法,验证了其有效性和鲁棒性。
      在这里插入图片描述

论文代码

代码链接:https://github.com/cgaocomp/GAMC

中文关键词

  1. 假新闻检测
  2. 无监督学习
  3. 图自编码器
  4. 数据增强
  5. 复合损失函数
  6. 社会背景

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

### 关于AAA AI 2024会议论文 AAAI-24会议定于2024年2月20日至2月27日举行[^1]。要查找与该会议相关的论文,通常可以通过以下几种方式获取: #### 官方网站 访问官方发布的会议页面通常是了解最新动态的最佳途径。尽管目前尚未提供具体链接,但可以预期的是,在接近会议日期前几个月,主办方会发布详细的议程以及接受的论文列表。 #### 数据库和索引服务 利用学术搜索引擎如Google Scholar、Microsoft Academic或者专门针对计算机科学领域的内容平台DBLP,输入关键词“AAAI 2024”可以帮助定位相关研究工作。这些工具能够快速筛选并展示匹配的结果。 #### 开放评审系统 部分顶级人工智能会议采用开放同行评议机制(例如ICLR曾使用的OpenReview平台[^2]),允许公众查看提交的手稿及其审阅过程记录。如果AAAI延续这一做法,则意味着潜在参与者可以直接在线浏览候选贡献项。 以下是基于Python实现的一个简单脚本用于自动化查询特定时间段内的出版物信息: ```python import requests from bs4 import BeautifulSoup def fetch_papers(year, conf_name="aaai"): base_url = f"https://www.{conf_name}.org/" response = requests.get(f"{base_url}proceedings/{year}") soup = BeautifulSoup(response.text, 'html.parser') titles = [] for item in soup.select('.paper-title'): title=item.string.strip() if not any(c.isdigit()for c in title): # filter out non-paper entries like headers etc. titles.append(title) return titles[:min(len(titles),10)] if __name__ == "__main__": year='2024' print(fetch_papers(year)) ``` 此代码片段仅作为演示用途;实际应用时需确认目标站点支持爬取操作,并遵循其robots.txt文件规定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值