AAAI2024最佳解读|Divide and Conquer Hybrid Pre-training for Person Search-water-merged

论文标题

Divide and Conquer: Hybrid Pre-training for Person Search 分治:用于行人搜索的混合预训练

论文链接

Divide and Conquer: Hybrid Pre-training for Person Search论文下载

论文作者

Yanling Tian, Di Chen, Yunan Liu, Jian Yang, Shanshan Zhang

内容简介

本文提出了一种混合预训练框架,旨在解决行人搜索任务中的数据稀缺问题。行人搜索任务需要同时进行行人检测和重识别,但现有方法通常依赖于ImageNet预训练模型,导致预训练任务与行人搜索任务之间存在显著差距。为此,作者利用行人检测和重识别的子任务数据,设计了一种新的混合学习范式,并引入了任务内对齐模块(IAM)以减轻领域差异。实验结果表明,该框架在多个协议下显著提升了行人搜索的性能,尤其是在mAP指标上相较于传统的ImageNet模型有10.3%的相对提升。该研究为行人搜索领域提供了新的思路和方法,促进了相关技术的发展。在这里插入图片描述

分点关键点在这里插入图片描述

  1. 混合预训练框架

    • 本文提出的混合预训练框架专门针对行人搜索任务,利用行人检测和重识别的子任务数据进行预训练。该框架结合了自监督学习和完全监督学习,能够在资源有限的情况下有效提取任务相关知识。
  2. 任务内对齐模块(IAM)

    • IAM用于对齐来自不同数据集的特征,以减轻领域差异对模型性能的影响。通过在实例和图像级别上进行对抗性特征对齐,IAM能够提高模型在行人搜索任务中的泛化能力。
  3. 实验结果与性能提升

    • 实验表明,使用该混合预训练框架的模型在PRW数据集上相较于传统的ImageNet预训练模型,mAP指标提升了10.3%。这一结果验证了该方法在行人搜索任务中的有效性和优越性。
  4. 未来工作展望

    • 本文的研究为行人搜索领域提供了新的思路,鼓励未来的研究者探索更多基于子任务数据的预训练方法,以进一步提升行人搜索的性能和应用范围。在这里插入图片描述

论文代码

代码链接:https://github.com/personsearch/PretrainPS

中文关键词

  1. 行人搜索
  2. 混合预训练
  3. 任务内对齐
  4. 行人检测
  5. 重识别
  6. 领域差异

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值