论文标题
Divide and Conquer: Hybrid Pre-training for Person Search 分治:用于行人搜索的混合预训练
论文链接
Divide and Conquer: Hybrid Pre-training for Person Search论文下载
论文作者
Yanling Tian, Di Chen, Yunan Liu, Jian Yang, Shanshan Zhang
内容简介
本文提出了一种混合预训练框架,旨在解决行人搜索任务中的数据稀缺问题。行人搜索任务需要同时进行行人检测和重识别,但现有方法通常依赖于ImageNet预训练模型,导致预训练任务与行人搜索任务之间存在显著差距。为此,作者利用行人检测和重识别的子任务数据,设计了一种新的混合学习范式,并引入了任务内对齐模块(IAM)以减轻领域差异。实验结果表明,该框架在多个协议下显著提升了行人搜索的性能,尤其是在mAP指标上相较于传统的ImageNet模型有10.3%的相对提升。该研究为行人搜索领域提供了新的思路和方法,促进了相关技术的发展。
分点关键点
-
混合预训练框架
- 本文提出的混合预训练框架专门针对行人搜索任务,利用行人检测和重识别的子任务数据进行预训练。该框架结合了自监督学习和完全监督学习,能够在资源有限的情况下有效提取任务相关知识。
-
任务内对齐模块(IAM)
- IAM用于对齐来自不同数据集的特征,以减轻领域差异对模型性能的影响。通过在实例和图像级别上进行对抗性特征对齐,IAM能够提高模型在行人搜索任务中的泛化能力。
-
实验结果与性能提升
- 实验表明,使用该混合预训练框架的模型在PRW数据集上相较于传统的ImageNet预训练模型,mAP指标提升了10.3%。这一结果验证了该方法在行人搜索任务中的有效性和优越性。
-
未来工作展望
- 本文的研究为行人搜索领域提供了新的思路,鼓励未来的研究者探索更多基于子任务数据的预训练方法,以进一步提升行人搜索的性能和应用范围。
- 本文的研究为行人搜索领域提供了新的思路,鼓励未来的研究者探索更多基于子任务数据的预训练方法,以进一步提升行人搜索的性能和应用范围。
论文代码
代码链接:https://github.com/personsearch/PretrainPS
中文关键词
- 行人搜索
- 混合预训练
- 任务内对齐
- 行人检测
- 重识别
- 领域差异
AAAI论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!