AAAI2024最佳解读|EarthVQA Towards Queryable Earth via Relational Reasoning-Based Remote Sensing

论文标题

EarthVQA: Towards Queryable Earth via Relational Reasoning-Based Remote Sensing Visual Question Answering 地球VQA:基于关系推理的遥感视觉问答,迈向可查询地球

论文链接

EarthVQA: Towards Queryable Earth via Relational Reasoning-Based Remote Sensing Visual Question Answering论文下载

论文作者

Junjue Wang, Zhuo Zheng, Zihang Chen, Ailong Ma, Yanfei Zhong

内容简介

本文提出了EarthVQA,一个多模态多任务的视觉问答(VQA)数据集,旨在通过关系推理来提升遥感图像的问答能力。EarthVQA数据集包含6000张图像、相应的语义掩码和208,593个问答对,涵盖城市和农村治理需求。为了解决现有VQA方法在复杂场景中对物体关系的忽视,本文提出了语义物体感知框架(SOBA),该框架通过分割网络生成物体语义,并利用对象引导的注意力机制进行关系建模。实验结果表明,SOBA在多个任务中优于现有的通用和遥感方法,展示了其在复杂地球视觉分析中的潜力。在这里插入图片描述

分点关键点在这里插入图片描述

  1. EarthVQA数据集

    • EarthVQA数据集包含6000张高空间分辨率遥感图像,208,593个问答对,涵盖六大类任务,从简单的判断和计数到复杂的关系推理和综合分析。数据集特别关注城市规划需求,嵌入了与住宅环境、交通状况和水体翻新相关的问题。
  2. 语义物体感知框架(SOBA)

    • SOBA框架通过分割网络生成精确的物体语义特征,并利用对象引导的混合注意力机制来建模物体之间的关系。该框架能够有效地处理复杂的地理空间对象关系,提升VQA的准确性和实用性。
  3. 数值差损失(ND Loss)

    • 为了增强回归问题的距离敏感性,本文提出了数值差损失(ND Loss),该损失函数将分类和回归任务统一到一个优化框架中。ND Loss通过动态惩罚机制,提升了模型在物体计数任务中的表现。
  4. 实验结果与比较

    • 实验结果显示,SOBA在EarthVQA测试集上优于多种先进的VQA方法,展示了其在复杂场景下的有效性。通过与其他遥感VQA方法的比较,SOBA在准确性和鲁棒性方面均表现出色。在这里插入图片描述

论文代码

代码链接:https://github.com/JunjueWang/EarthVQA

中文关键词

  1. 遥感视觉问答
  2. 关系推理
  3. 语义物体感知
  4. 多模态数据集
  5. 数值差损失
  6. 城市规划

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

内容概要:本文详细介绍了FLAC3D6.0软件中关于巷道开挖、支护与充填开采的三组源代码及其应用场景。首先,针对巷道开挖部分,通过设定合理的边界条件和采用适当的命令如zone relax excavate来模拟开挖后地压对巷道稳定性的动态影响。其次,在巷道锚杆支护方面,强调了锚杆与围岩之间的耦合关系以及相关参数的精确设置,确保支护的有效性和可靠性。最后,对于工作面充填开采,则重点探讨了充填体的存在与否对上覆岩层应力场、位移场和破坏场的具体影响,并提供了具体的代码实现方法。此外,还分享了一些实用的小技巧,比如利用save [filename]和restore命令进行参数敏感性分析,提高了计算效率。 适合人群:从事岩土工程领域的研究人员和技术人员,尤其是那些希望深入了解FLAC3D6.0软件在巷道开挖、支护与充填开采方面的应用的人士。 使用场景及目标:适用于需要进行巷道开挖、支护与充填开采数值模拟的研究项目。主要目的是帮助用户掌握FLAC3D6.0的相关命令和参数配置,以便更好地理解和预测实际工程中的地质力学行为。 其他说明:文中提供的代码均带有详细的汉语注释,便于初学者学习和理解。同时,作者提醒使用者要注意一些常见的陷阱,如边界条件的选择、锚杆耦合等问题,以避免计算过程中出现不必要的错误。
### AAAI 2024 Conference Related Code Repositories For individuals interested in exploring the latest advancements presented at conferences like AAAI 2024, several platforms provide access to associated code repositories and examples. GitHub serves as a primary hub where researchers often publish their work alongside papers[^2]. By navigating through specific tags or using search terms such as "AAAI 2024," one can discover numerous projects that were either showcased during the event or inspired by it. Additionally, many academic institutions maintain dedicated pages for each edition of major AI conferences including AAAI. These sites typically include links to accepted paper submissions along with supplementary materials which may consist of datasets used in experiments, implementation details, and even full source codes when authors opt to share them publicly[^1]. Moreover, community-driven initiatives also play an important role in aggregating resources around significant events within the field of artificial intelligence. Websites focused on machine learning and data science frequently compile lists of noteworthy contributions from recent gatherings, offering readers easy navigation between abstracts and corresponding software implementations available online. #### Example Search Query for Finding Relevant Projects To streamline this process further, here is how someone might structure a query aimed at uncovering relevant repositories: ```bash site:github.com intitle:"AAAI 2024" ``` This command leverages Google's advanced operators to filter results specifically targeting titles containing both keywords while restricting searches exclusively within the domain name provided (in this case, GitHub). --related questions-- 1. How do I effectively contribute my own project to be featured prominently after attending prominent AI conferences? 2. What are some best practices for documenting research code intended for public release following publication in journals or presentation at symposiums? 3. Can you recommend any tools designed to facilitate collaboration among developers working on open-source AI applications derived from conference proceedings?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值