AAAI2024最佳解读|Generative-based Fusion Mechanism for Multi-Modal Tracking-water-merged

论文标题

Generative-Based Fusion Mechanism for Multi-Modal Tracking 基于生成式融合机制的多模态跟踪

论文链接

Generative-Based Fusion Mechanism for Multi-Modal Tracking论文下载

论文作者

Zhangyong Tang, Tianyang Xu, Xiaojun Wu, Xue-Feng Zhu, Josef Kittler

内容简介

本文提出了一种新颖的基于生成模型的融合机制(GMMT),旨在解决多模态跟踪中的信息融合问题。尽管生成模型(GMs)在实现全面理解方面表现出色,但其在多模态跟踪中的应用尚未得到充分探索。本文深入探讨了条件生成对抗网络(CGANs)和扩散模型(DMs)这两种生成模型技术。与传统的融合过程不同,GMMT将多模态特征与随机噪声结合,从而有效地将原始训练样本转化为更具挑战性的实例。通过在多个基准数据集上进行广泛实验,结果表明,所提出的生成式融合机制在GTOT、LasHeR和RGBD1K等任务中均达到了最先进的性能,显著提升了跟踪精度。在这里插入图片描述

分点关键点在这里插入图片描述

  1. 生成模型的应用

    • 本文探讨了生成模型在多模态跟踪中的潜力,提出了一种新颖的生成式融合机制(GMMT),旨在增强融合特征的判别性。通过将多模态特征与随机噪声结合,GMMT能够有效提取判别性线索,从而提高跟踪性能。
  2. 实验设计与结果

    • 研究在两个多模态跟踪任务上进行了广泛的实验,使用了三种基线方法和四个具有挑战性的基准。实验结果显示,GMMT在多个评估指标上均表现出色,尤其是在GTOT、LasHeR和RGBD1K数据集上创下了新的记录。
  3. 融合机制的创新

    • GMMT的设计与传统的融合机制不同,采用了生成模型的框架,使得融合过程不仅依赖于特征的直接输入,还结合了随机噪声,从而提升了模型对噪声的感知能力,生成的融合特征更加干净,提升了跟踪器的准确性。
  4. 多模态特征的处理

    • 本文提出的GMMT在处理多模态特征时,保留了每个模态的特征信息,确保在测试时能够自适应地融合特定图像对。这种方法有效避免了过拟合,并扩大了数据集的规模。在这里插入图片描述

论文代码

代码链接:https://github.com/Zhangyong-Tang/GMMT

中文关键词

  1. 生成模型
  2. 多模态跟踪
  3. 信息融合
  4. 条件生成对抗网络
  5. 扩散模型
  6. 跟踪性能

AAAI论文合集:

AAAI论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值