E - Revenge of GCD
题目描述
给你两个数x和y,求它们的第k大公约数。
题目分析
由算术基本定理知
x=(a1x1)(a2x2)…(anxn)
y=(a1y1)(a2y2)…(anyn)
gcd(x,y)=(a1min(x1,y1))(a2min(x2,y2) )…(anmin(xn,yn))
x和y的第k大公约数离不开gcd(x,y)的因子,因此,题目可转化为求gcd(x,y)的第k大因子。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){
if(b==0)
return a;
return gcd(b,a%b);
}
int main(){
int ca;
cin>>ca;
ll x,y,k;
while(ca--){
cin>>x>>y>>k;
ll num=gcd(x,y),yinzi=0,i;
if(num==1)
yinzi=1;
else{//先算算有几个因子
for(i=1;i*i<num;i++){
if(num%i==0)
yinzi+=2;
}
yinzi+=(i*i==num);
}
if(k>yinzi)
printf("-1\n");
else{
ll l=1,r=yinzi;
for(i=1;i*i<=num;i++){
//i是递增的,算出的因子从小到大,题目是第k大
if(num%i==0){
if(l==k){
printf("%lld\n",num/i);
break;
}
if(r==k){
printf("%lld\n",i);
break;
}
l++,r--;
}
}
}
}
}