56、子宫电活动模式分类与双相情感障碍诊断研究

子宫电活动模式分类与双相情感障碍诊断研究

子宫电活动模式分类研究

在子宫电活动研究中,为避免混叠现象,记录电路采用 500 Hz 的采样频率。以下将详细介绍信号分析和分类方法。

信号分析
  • 双极信号计算 :利用四个单极通道计算两个双极信号,分别对应子宫肌肉的上部(BP1 = V2 – V1)和下部(BP2 = V4 – V3)。双极采集通道凭借高共模抑制比(CMRR)能够抑制常见干扰,从而提供高质量的子宫电活动图(EHG)信号。不过,使用双极通道会将可测量工作电位的子宫肌肉区域限制在电极间距对应的深度范围内。
  • 收缩曲线分析 :经典方法中,收缩曲线用宫缩图表示,其分析依赖于确定描述检测到的子宫收缩模式的定量参数,包括发生率 R、持续时间 TD、上升时间 TA、振幅 A 和面积 S。收缩检测通过找出收缩曲线中振幅超过既定阈值水平且持续时间超过 30 秒的片段来实现。该阈值水平高于代表子宫肌肉细胞静息电活动的基础音调。
  • 慢波提取 :为检测 EHG 中的收缩并进行经典时域分析,首先需从采集信号中提取对应收缩曲线的慢波。提取方法基于以 3 秒为步长的一分钟窗口内连续均方根值的计算。由于 EHG 信号振幅因患者而异,用于收缩检测的算法应能补偿不同 EHG 之间的振幅变化。
  • 基础音调和阈值确定 :在每个四分钟宽、一分钟步长的窗口内,将慢波样本按从低到高的顺序排列,计算最低 10%样本的平均值作为基础音调的连续样本,此过程可称为联合中值和移动平均滤波。基础音调
内容概要:本文详细介绍了一个基于Java和Vue的招聘JD简历匹配系统的设计实现,系统通过信息抽取技术和语义匹配算法,实现简历岗位描述的自动化、智能化匹配。项目涵盖文本预处理、关键信息抽取、语义向量化、相似度计算、前后端交互、数据库设计、API接口规范、安全合规及系统部署等完整流程,并提供了详细的代码示例和模块说明,构建了从前端可视化到后端高并发处理的全栈解决方案。系统支持精准人岗匹配、数据可视化分析、消息推送、权限管理等功能,具备高可用性、可扩展性和数据安全性。; 适合人群:具备Java和Vue开发基础的中初级程序员、希望深入理解前后端分离架构NLP技术集成的开发者、从事人力资源信息化系统设计的技术人员以及计算机相关专业的学生。; 使用场景及目标:①应用于企业智能招聘平台、校园招聘系统、猎头服务等场景,提升招聘效率匹配精准度;②作为教学案例或项目实践模板,帮助开发者掌握Spring Boot、Vue、NLP、Redis、MySQL等技术的综合应用;③实现简历JD的自动解析、多维度语义匹配推荐,优化招聘流程自动化水平。; 阅读建议:建议读者结合文档中的代码示例数据库设计,搭建本地开发环境进行实践操作,重点关注信息抽取、语义匹配算法前后端交互逻辑的实现细节,同时注意安全机制系统性能优化策略的应用,以全面掌握该系统的架构设计工程实现方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值