停车场车位占用检测与眨眼检测技术研究
停车场车位占用检测
训练集创建
为了实现停车场车位占用检测,创建了包含 4500 个正样本和 4500 个负样本的训练图像集。具体操作如下:
- 正样本 :选取最靠近相机的第一排车辆作为正样本。这些车辆与后排车辆略有相似,但主要差异在于大小。第一排样本不受相机畸变影响,且是在不同气候和光照条件下获取的,以提升检测性能。每个正样本在训练阶段被调整为 20×24 像素。
- 负样本 :负样本来自停车场的空车位,同样在不同气候和光照条件下采集,以保证检测的准确性。
真实世界测试
在进行后续实验前,对基于 HOG 描述符和 SVM 的检测器与所提出的检测方法进行了比较。具体操作如下:
- HOG 检测器配置 :将每个正、负样本调整为 96×96 像素进行训练。HOG1 配置为块大小 16×16,单元格大小 8×8,水平步长 8,直方图区间数为 4。该配置在白天光照下检测率较高,但在夜间光照(有噪声的图像)下,误报率高于所提出的检测器。
- 检测率对比 :在有噪声的图像中,两种检测器(未进行改进)的检测率如下表所示:
| 方法 | 检测到的车辆数 | 车辆检测率 | 检测到的空车位 | 空车位检测率 | 准确率 |
| — | — | — | — | — | — |
| HOG1 | 17/18 | 94.4% | 179/430 | 41.6% | 43.8% |
| 提出的方法 | 14/18
超级会员免费看
订阅专栏 解锁全文
1674

被折叠的 条评论
为什么被折叠?



