68、停车场车位占用检测与眨眼检测技术研究

停车场车位占用检测与眨眼检测技术研究

停车场车位占用检测

训练集创建

为了实现停车场车位占用检测,创建了包含 4500 个正样本和 4500 个负样本的训练图像集。具体操作如下:
- 正样本 :选取最靠近相机的第一排车辆作为正样本。这些车辆与后排车辆略有相似,但主要差异在于大小。第一排样本不受相机畸变影响,且是在不同气候和光照条件下获取的,以提升检测性能。每个正样本在训练阶段被调整为 20×24 像素。
- 负样本 :负样本来自停车场的空车位,同样在不同气候和光照条件下采集,以保证检测的准确性。

真实世界测试

在进行后续实验前,对基于 HOG 描述符和 SVM 的检测器与所提出的检测方法进行了比较。具体操作如下:
- HOG 检测器配置 :将每个正、负样本调整为 96×96 像素进行训练。HOG1 配置为块大小 16×16,单元格大小 8×8,水平步长 8,直方图区间数为 4。该配置在白天光照下检测率较高,但在夜间光照(有噪声的图像)下,误报率高于所提出的检测器。
- 检测率对比 :在有噪声的图像中,两种检测器(未进行改进)的检测率如下表所示:
| 方法 | 检测到的车辆数 | 车辆检测率 | 检测到的空车位 | 空车位检测率 | 准确率 |
| — | — | — | — | — | — |
| HOG1 | 17/18 | 94.4% | 179/430 | 41.6% | 43.8% |
| 提出的方法 | 14/18

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值