浮点LLL算法:理论与实践方面
1. 浮点LLL算法执行问题
在一些库(如NTL)中执行浮点LLL算法时,它与有理LLL的执行有较大不同。在NTL的LLL里,会尝试给定的精度。若执行时间过长,用户需停止并以更高精度或更可靠的变体重新启动,但却不清楚是算法本身表现不佳(此时提高精度可能有帮助),还是只是执行时间长(这种情况下提高精度会让过程更慢)。从用户角度看,缺乏错误检测和解释很烦人,在NTL和LiDia中,可能要尝试多个变体才能成功。
2. L2算法的实现
在实现L2算法时,实践中应先尝试启发式变体,再使用有保证的L2算法。可以从两个方面弱化L2算法:一是只使用基矩阵而非Gram矩阵;二是使用比理论上足够的精度低很多的浮点精度。下面介绍几种底层浮点运算的层次:
- 双精度 :速度极快,但指数位有限(11位),精度也有限(53位)。指数限制使得能转换小于1022位的整数(若要转换Gram矩阵,位数约减半)。有限的精度虽不太严重,但限制了高维情况的处理。
- 带额外指数的双精度(dpes) :速度仍较快,但精度限制依旧存在。
- 启发式扩展精度 :若需要更高精度,可使用任意精度的浮点数。根据L2算法分析,精度 ℓ ≈ log((1 + η)² / (δ - η²)) * d 总是足够的,但可先尝试启发式的较低精度。
- 可证明的扩展精度 :使用任意精度浮点数,尾数大小为 ℓ ≈ log((1 + η)² / (δ - η²)) * d
超级会员免费看
订阅专栏 解锁全文
1327

被折叠的 条评论
为什么被折叠?



