23、浮点LLL算法:理论与实践方面

浮点LLL算法:理论与实践方面

1. 浮点LLL算法执行问题

在一些库(如NTL)中执行浮点LLL算法时,它与有理LLL的执行有较大不同。在NTL的LLL里,会尝试给定的精度。若执行时间过长,用户需停止并以更高精度或更可靠的变体重新启动,但却不清楚是算法本身表现不佳(此时提高精度可能有帮助),还是只是执行时间长(这种情况下提高精度会让过程更慢)。从用户角度看,缺乏错误检测和解释很烦人,在NTL和LiDia中,可能要尝试多个变体才能成功。

2. L2算法的实现

在实现L2算法时,实践中应先尝试启发式变体,再使用有保证的L2算法。可以从两个方面弱化L2算法:一是只使用基矩阵而非Gram矩阵;二是使用比理论上足够的精度低很多的浮点精度。下面介绍几种底层浮点运算的层次:
- 双精度 :速度极快,但指数位有限(11位),精度也有限(53位)。指数限制使得能转换小于1022位的整数(若要转换Gram矩阵,位数约减半)。有限的精度虽不太严重,但限制了高维情况的处理。
- 带额外指数的双精度(dpes) :速度仍较快,但精度限制依旧存在。
- 启发式扩展精度 :若需要更高精度,可使用任意精度的浮点数。根据L2算法分析,精度 ℓ ≈ log((1 + η)² / (δ - η²)) * d 总是足够的,但可先尝试启发式的较低精度。
- 可证明的扩展精度 :使用任意精度浮点数,尾数大小为 ℓ ≈ log((1 + η)² / (δ - η²)) * d

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值