浮点 LLL 算法:理论与实践方面
浮点 LLL 算法的问题
在使用浮点运算实现 LLL 算法时,会遇到一些问题,下面详细介绍这些问题:
1. 标量积计算不准确 :当计算两个向量的标量积时,如果先将矩阵元素四舍五入到双精度,可能会导致计算结果与真实值偏差较大。例如,当$r_{1,1} = 2$,若按上述方式计算$\langle b_2, b_1 \rangle$,其估计值可能为 0,进而计算出的$\tilde{\mu} {2,1}$为 0,此时算法会认为基是 LLL 约化的,但实际上$\mu {2,1} = 240$,这与大小约化条件矛盾。为了准确测试大小约化条件,可能需要使用至少与输入矩阵元素位长相同的精度,这可能会带来较高的计算成本。
2. 大小约化不完整 :精度可能不足以完全执行大小约化操作。例如,对于格基$\begin{pmatrix}1 & 2^{54} + 1 \ 0 & 1\end{pmatrix}$,算法计算出$\tilde{\mu} {2,1} = 2^{54}$,由于真实值的位长太大,无法用双精度浮点数存储。然后算法尝试对第二个向量进行大小约化,执行操作$b_2 := b_2 - 2^{54}b_1 = (1, 1)^t$,接着检查 Lovász 条件是否满足并终止。但实际上输出基仍未完成大小约化,因为$\mu {2,1} = 1$。这是因为尾数大小太小,无法处理大小约化,可能需要更高的精度或修复程序。
3. GSO 系数计算精度下降 :在计算 GSO 系数时,给定的$\tilde{r}
超级会员免费看
订阅专栏 解锁全文
20

被折叠的 条评论
为什么被折叠?



