22、浮点 LLL 算法:理论与实践方面

浮点 LLL 算法:理论与实践方面

浮点 LLL 算法的问题

在使用浮点运算实现 LLL 算法时,会遇到一些问题,下面详细介绍这些问题:
1. 标量积计算不准确 :当计算两个向量的标量积时,如果先将矩阵元素四舍五入到双精度,可能会导致计算结果与真实值偏差较大。例如,当$r_{1,1} = 2$,若按上述方式计算$\langle b_2, b_1 \rangle$,其估计值可能为 0,进而计算出的$\tilde{\mu} {2,1}$为 0,此时算法会认为基是 LLL 约化的,但实际上$\mu {2,1} = 240$,这与大小约化条件矛盾。为了准确测试大小约化条件,可能需要使用至少与输入矩阵元素位长相同的精度,这可能会带来较高的计算成本。
2. 大小约化不完整 :精度可能不足以完全执行大小约化操作。例如,对于格基$\begin{pmatrix}1 & 2^{54} + 1 \ 0 & 1\end{pmatrix}$,算法计算出$\tilde{\mu} {2,1} = 2^{54}$,由于真实值的位长太大,无法用双精度浮点数存储。然后算法尝试对第二个向量进行大小约化,执行操作$b_2 := b_2 - 2^{54}b_1 = (1, 1)^t$,接着检查 Lovász 条件是否满足并终止。但实际上输出基仍未完成大小约化,因为$\mu {2,1} = 1$。这是因为尾数大小太小,无法处理大小约化,可能需要更高的精度或修复程序。
3. GSO 系数计算精度下降 :在计算 GSO 系数时,给定的$\tilde{r}

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值