LLL算法在数论中的应用探索
代数数逼近与多项式的联系
在研究多项式在某点取值较小时,自然会思考能否将这些结果转化为关于用次数和高度不太大地代数数进行逼近地结果。实际上,通过一些将 $\min |\omega - \alpha|$ 和 $|P(\alpha)|$ 联系起来地定理是可以实现地。这里的最小值是在 $P$ 的根上取的。
定理23
设 $P(X)$ 是非零复多项式,且 $P’(\omega) \neq 0$,则
$\min_{\alpha} |\omega - \alpha| \leq n\left|\frac{P(\omega)}{P’(\omega)}\right|$
其中最小值是在 $P$ 的根上取的。证明是通过对 $P$ 取对数导数得到:$\frac{P’(\omega)}{P(\omega)} = \sum_{\alpha} \frac{1}{\omega - \alpha}$。
在实际应用中,如果随机选择 $\omega$ 并通过特定技术构造 $P$,我们期望 $P’$ 在 $\omega$ 处表现“随机”,即 $|P’(\omega)| \approx H(P)|\omega|^d$,从而得到一个量级为 $\frac{|P(\omega)|}{H(P)|\omega|^d}$ 的下界。对于处理 $|P’(\omega)|$ 也较小的更一般情况,可参考相关文献。
接近簇的有理点
“线性关系”部分的结果可以看作是寻找接近射影或仿射线性簇的整点。而求解丢番图方程则是寻找代数簇上的整点或有理点。接下来研究寻找接近足够光滑簇的所有或部分点的问题。
超级会员免费看
订阅专栏 解锁全文
21

被折叠的 条评论
为什么被折叠?



