30、LLL算法在数论中的应用探索

LLL算法在数论中的应用探索

代数数逼近与多项式的联系

在研究多项式在某点取值较小时,自然会思考能否将这些结果转化为关于用次数和高度不太大地代数数进行逼近地结果。实际上,通过一些将 $\min |\omega - \alpha|$ 和 $|P(\alpha)|$ 联系起来地定理是可以实现地。这里的最小值是在 $P$ 的根上取的。

定理23

设 $P(X)$ 是非零复多项式,且 $P’(\omega) \neq 0$,则
$\min_{\alpha} |\omega - \alpha| \leq n\left|\frac{P(\omega)}{P’(\omega)}\right|$
其中最小值是在 $P$ 的根上取的。证明是通过对 $P$ 取对数导数得到:$\frac{P’(\omega)}{P(\omega)} = \sum_{\alpha} \frac{1}{\omega - \alpha}$。

在实际应用中,如果随机选择 $\omega$ 并通过特定技术构造 $P$,我们期望 $P’$ 在 $\omega$ 处表现“随机”,即 $|P’(\omega)| \approx H(P)|\omega|^d$,从而得到一个量级为 $\frac{|P(\omega)|}{H(P)|\omega|^d}$ 的下界。对于处理 $|P’(\omega)|$ 也较小的更一般情况,可参考相关文献。

接近簇的有理点

“线性关系”部分的结果可以看作是寻找接近射影或仿射线性簇的整点。而求解丢番图方程则是寻找代数簇上的整点或有理点。接下来研究寻找接近足够光滑簇的所有或部分点的问题。

Elkies

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值