31、LLL算法在数论中的应用:二次方程求解与类群计算

LLL算法在数论中的应用:二次方程求解与类群计算

1. 有理数域上二次方程求解

在有理数域 (Q) 上求解二次方程时,通常可假设方程是可解的。其中,三元二次方程 (q(x, y, z) = 0)(系数和未知数均为有理数)是一类值得研究的方程,其特殊形式——对角方程 (ax^2 + by^2 + cz^2 = 0)(也称为勒让德方程)备受关注。

1.1 勒让德方程求解算法

  • 传统算法 :一些算法通过将 (ax^2 + by^2 + cz^2 = 0) 的解归结为系数更小的 (a_0x^2 + b_0y^2 + c_0z^2 = 0) 的解。然而,这种约化依赖于模 (a)、(b) 或 (c) 开平方的可能性,这需要知道 (abc) 的因式分解。整个算法过程中,因式分解的总数较多,且待分解的数可能很大,导致实际求解速度极慢。
  • 高效算法 :存在一些不分解除 (a)、(b) 和 (c) 之外其他整数的算法,如文献中提到的算法,在实践中运行速度较快。

1.2 LLL算法求解勒让德方程

LLL算法可用于约化二次型,理论上可用于求解有理数域上的二次方程。但二次方程有解时通常不是正定的,而LLL算法先验地只能处理正定二次型,可通过以下两种方法解决:
- 构建新的正定二次型 :构建 (q = |a|x^2 + |b|y^2 + |c|z^2),若 (a)、(b) 和 (c) 是互质的无平方因子整数,(ax^2 + by^2 + cz^2 = 0) 的一些整数解位于 (Z^3) 的一

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值