LLL算法在数论中的应用:二次方程求解与类群计算
1. 有理数域上二次方程求解
在有理数域 (Q) 上求解二次方程时,通常可假设方程是可解的。其中,三元二次方程 (q(x, y, z) = 0)(系数和未知数均为有理数)是一类值得研究的方程,其特殊形式——对角方程 (ax^2 + by^2 + cz^2 = 0)(也称为勒让德方程)备受关注。
1.1 勒让德方程求解算法
- 传统算法 :一些算法通过将 (ax^2 + by^2 + cz^2 = 0) 的解归结为系数更小的 (a_0x^2 + b_0y^2 + c_0z^2 = 0) 的解。然而,这种约化依赖于模 (a)、(b) 或 (c) 开平方的可能性,这需要知道 (abc) 的因式分解。整个算法过程中,因式分解的总数较多,且待分解的数可能很大,导致实际求解速度极慢。
- 高效算法 :存在一些不分解除 (a)、(b) 和 (c) 之外其他整数的算法,如文献中提到的算法,在实践中运行速度较快。
1.2 LLL算法求解勒让德方程
LLL算法可用于约化二次型,理论上可用于求解有理数域上的二次方程。但二次方程有解时通常不是正定的,而LLL算法先验地只能处理正定二次型,可通过以下两种方法解决:
- 构建新的正定二次型 :构建 (q = |a|x^2 + |b|y^2 + |c|z^2),若 (a)、(b) 和 (c) 是互质的无平方因子整数,(ax^2 + by^2 + cz^2 = 0) 的一些整数解位于 (Z^3) 的一
超级会员免费看
订阅专栏 解锁全文
22

被折叠的 条评论
为什么被折叠?



