可见 - 红外身份一致性构建及二阶不确定多智能体系统自适应共识算法
在当今的科技领域,跨模态场景下的人物重识别以及多智能体系统的共识问题是研究的热点。前者在安防监控等领域有着重要应用,而后者在机器人协作、卫星集群控制等方面具有关键意义。本文将介绍一种基于云的可见 - 红外身份一致性构建方法以及一种二阶不确定多智能体系统在通信延迟下使用相对输出信息的自适应共识算法。
基于云的可见 - 红外身份一致性构建方法
在跨模态场景中,监控设备全天会持续生成图像数据。由于本地设备存储空间有限,数据一旦溢出,模型就无法正常运行。为解决这一问题,设计了基于云的身份一致性构建(ICC)工作流程。
- 云环境组成 :云环境包括中央云和存储云。
- 存储工作流程 :相机采集的图像数据上传到中央云,中央云基于这些数据生成相应的图像数据集,然后将数据集传输到存储云。数据集会在存储云中的每个云(从 Cloud1 到 Cloudn)进行备份。
- 计算工作流程 :中央云先向存储云发送数据集请求,存储云中随机选择的 Cloudk(k ∈[1, n] 且 k ∈N)会向中央云返回同意消息,同时 Cloudk 使用数据集训练 ICC 模型。
这个工作流程实现了人物重识别任务的合理分配,将数据收集和上传任务分配给存储空间有限的本地设备,而数据存储和模型计算任务则在资源更丰富的云环境中进行,确保了模型的正常运行。
graph LR
A[
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



