半环与形式幂级数:从基础概念到实际应用
1. 引言
半环和形式幂级数在数学和计算机科学领域有着广泛的应用。本文将深入探讨半环和形式幂级数的相关概念,包括幺半群、半环的定义、性质以及它们之间的关系,同时还会介绍一些特殊的半环类型和相关操作。
2. 幺半群的基本概念
幺半群是一个非空集合 $M$,配备一个二元结合运算 $·$ 和一个单位元 $1$,满足对于任意 $m \in M$,有 $m · 1 = 1 · m = m$。如果对于任意 $m_1, m_2 \in M$,都有 $m_1 · m_2 = m_2 · m_1$,则称该幺半群是交换的。二元运算通常用并列表示,常被称为乘积。
常见的幺半群表示方法:
- 当运算和单位元明确时,简单地用 $M$ 表示幺半群。
- 否则,使用三元组 $\langle M, ·, 1\rangle$ 表示。
- 交换幺半群通常表示为 $\langle M, +, 0\rangle$。
在众多幺半群中,由非空集合 $\Sigma$ 生成的自由幺半群 $\Sigma^ $ 是非常重要的一种。它的元素是 $\Sigma$ 上的所有有限字 $x_1 \cdots x_n$,其中 $x_i \in \Sigma$,$1 \leq i \leq n$,$n \geq 0$。两个字 $w_1$ 和 $w_2$ 的乘积 $w_1 · w_2$ 是将 $w_2$ 直接接在 $w_1$ 后面得到的字符串。$\Sigma^ $ 的单位元(即 $n = 0$ 的情况),也称为空字,用 $\varepsilon$ 表示。$\Sigma$ 中的元素称为字母或符号,$\Sigma$
超级会员免费看
订阅专栏 解锁全文
18

被折叠的 条评论
为什么被折叠?



