头文件和宏模板

#include <functional>  
#include <algorithm>  
#include <iostream>  
#include <fstream>  
#include <sstream>  
#include <iomanip>  
#include <numeric>  
#include <cstring>  
#include <cassert>  
#include <cstdio>  
#include <string>  
#include <vector>  
#include <bitset>  
#include <queue>  
#include <stack>  
#include <cmath>  
#include <ctime>  
#include <list>  
#include <set>  
#include <map>  
  
using namespace std;  
  
#define REP(i, n) for (int i=0;i<int(n);++i)  
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i)  
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i)  
#define REP_1(i, n) for (int i=1;i<=int(n);++i)  
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i)  
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i)  
#define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i)  
#define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i)  
#define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i)  
#define REP_N(i, n) for (i=0;i<int(n);++i)  
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i)  
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i)  
#define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i)  
#define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i)  
#define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i)  
#define REP_1_N(i, n) for (i=1;i<=int(n);++i)  
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i)  
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i)  
#define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i)  
#define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i)  
#define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i)  
#define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i)  
#define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i)  
#define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i)  
  
//#define ECH(it, A) for (typeof(A.begin()) it=A.begin(); it != A.end(); ++it)  
#define ECH(it, A) for (__typeof(A.begin()) it=A.begin(); it != A.end(); ++it)  
#define REP_S(it, str) for (char*it=str;*it;++it)  
#define REP_G(it, u) for (int it=hd[u];it;it=suc[it])  
#define DO(n) for ( int ____n ## __line__ = n; ____n ## __line__ -- ; )  
#define REP_2(i, j, n, m) REP(i, n) REP(j, m)  
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m)  
#define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l)  
#define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l)  
  
#define ALL(A) A.begin(), A.end()  
#define LLA(A) A.rbegin(), A.rend()  
#define CPY(A, B) memcpy(A, B, sizeof(A))  
#define INS(A, P, B) A.insert(A.begin() + P, B)  
#define ERS(A, P) A.erase(A.begin() + P)  
#define BSC(A, X) find(ALL(A), X) // != A.end()  
#define CTN(T, x) (T.find(x) != T.end())  
#define SZ(A) int(A.size())  
#define PB push_back  
#define MP(A, B) make_pair(A, B)  
#define PTT pair<T, T>  
#define fi first  
#define se second  
  
#define Rush int T____; RD(T____); DO(T____)  
  
#define Display(A, n, m) {                      \  
    REP(i, n){                                  \  
        REP(j, m) cout << A[i][j] << " ";       \  
        cout << endl;                         \  
    }                                           \  
}  
  
#define Display_1(A, n, m) {                    \  
    REP_1(i, n){                                \  
        REP_1(j, m) cout << A[i][j] << " ";     \  
        cout << endl;                         \  
    }                                           \  
}  
  
#pragma comment(linker, "/STACK:36777216")  
//#pragma GCC optimize ("O2")  
#define Ruby system("ruby main.rb")  
#define Haskell system("runghc main.hs")  
#define Python system("python main.py")  
#define Pascal system("fpc main.pas")  
  
typedef long long LL;  
//typedef long double DB;  
typedef double DB;  
typedef unsigned UINT;  
typedef unsigned long long ULL;  
  
typedef vector<int> VI;  
typedef vector<char> VC;  
typedef vector<string> VS;  
typedef vector<LL> VL;  
typedef vector<DB> VD;  
typedef set<int> SI;  
typedef set<string> SS;  
typedef set<LL> SL;  
typedef set<DB> SD;  
typedef map<int, int> MII;  
typedef map<string, int> MSI;  
typedef map<LL, int> MLI;  
typedef map<DB, int> MDI;  
typedef pair<int, int> PII;  
typedef pair<int, bool> PIB;  
typedef pair<LL, LL> PLL;  
typedef vector<PII> VII;  
typedef vector<VI> VVI;  
typedef vector<VII> VVII;  
  
template<class T> inline T& RD(T &);  
template<class T> inline void OT(const T &);  
inline LL RD(){LL x; return RD(x);}  
inline char& RC(char &c){scanf(" %c", &c); return c;}  
inline char RC(){char c; return RC(c);}  
//inline char& RC(char &c){c = getchar(); return c;}  
//inline char RC(){return getchar();}  
inline DB& RF(DB &x){scanf("%lf", &x); return x;}  
inline DB RF(){DB x; return RF(x);}  
inline char* RS(char *s){scanf("%s", s); return s;}  
  
template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;}  
template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;}  
template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;}  
template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;}  
template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);}  
template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);}  
template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);}  
inline char& RC(char &a, char &b){RC(a), RC(b); return a;}  
inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;}  
inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;}  
inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;}  
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;}  
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;}  
inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;}  
inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;}  
inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;}  
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;}  
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;}  
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;}  
inline void RS(char *s1, char *s2){RS(s1), RS(s2);}  
inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);}  
  
template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));}  
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);}  
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);}  
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);}  
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));}  
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);}  
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);}  
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);}  
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);}  
template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){while (!Q.empty()) Q.pop();}  
template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){while (!Q.empty()) Q.pop();}  
template<class T> inline void CLR(T &A){A.clear();}  
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);}  
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);}  
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);}  
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);}  
  
template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;}  
template<class T, class C> inline T& SRT(T &A, C B){sort(ALL(A), B); return A;}  
  
/** Add - On **/  
  
const int dx4[] = {-1, 0, 1, 0};  
const int dy4[] = {0, 1, 0, -1};  
  
const int dx8[] = {-1, 0, 1, 0 , -1 , -1 , 1 , 1};  
const int dy8[] = {0, 1, 0, -1 , -1 , 1 , -1 , 1};  
  
const int dxhorse[] = {-2 , -2 , -1 , -1 , 1 , 1 , 2 , 2};  
const int dyhorse[] = {1 ,  -1 , 2  , -2 , 2 ,-2 , 1 ,-1};  
  
const int MOD = 1000000007;  
//int MOD = 99990001;  
const int INF = 0x3f3f3f3f;  
const LL INFF = 1LL << 60;  
const DB EPS = 1e-9;  
const DB OO = 1e15;  
const DB PI = acos(-1.0); //M_PI;  
  
// <<= ` 0. Daily Use .,  
  
template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;}  
template<class T> inline void checkMax(T &a,const T b){if (a<b) a=b;}  
template<class T> inline void checkMin(T &a, T &b, const T x){checkMin(a, x), checkMin(b, x);}  
template<class T> inline void checkMax(T &a, T &b, const T x){checkMax(a, x), checkMax(b, x);}  
template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;}  
template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;}  
template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);}  
template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);}  
template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));}  
template<class T> inline T max(T a, T b, T c, T d){return max(max(a, b), max(c, d));}  
template<class T> inline T sqr(T a){return a*a;}  
template<class T> inline T cub(T a){return a*a*a;}  
inline int Ceil(int x, int y){return (x - 1) / y + 1;}  
  
// <<= ` 1. Bitwise Operation .,  
  
namespace BO{  
  
inline bool _1(int x, int i){return bool(x&1<<i);}  
inline bool _1(LL x, int i){return bool(x&1LL<<i);}  
inline LL _1(int i){return 1LL<<i;}  
inline LL _U(int i){return _1(i) - 1;};  
  
inline int reverse_bits(int x){  
    x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa);  
    x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);  
    x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0);  
    x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);  
    x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000);  
    return x;  
}  
  
inline LL reverse_bits(LL x){  
    x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL);  
    x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL);  
    x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL);  
    x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL);  
    x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL);  
    x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL);  
    return x;  
}  
  
template<class T> inline bool odd(T x){return x&1;}  
template<class T> inline T low_bit(T x) {return x & -x;}  
template<class T> inline T high_bit(T x) {T p = low_bit(x);while (p != x) x -= p, p = low_bit(x);return p;}  
template<class T> inline T cover_bit(T x){T p = 1; while (p < x) p <<= 1;return p;}  
inline int low_idx(int x){return __builtin_ffs(x);}  
inline int low_idx(LL x){return __builtin_ffsll(x);}  
inline int high_idx(int x){return low_idx(reverse_bits(x));}  
inline int high_idx(LL x){return low_idx(reverse_bits(x));}  
inline int clz(int x){return __builtin_clz(x);}  
inline int clz(LL x){return __builtin_clzll(x);}  
inline int ctz(int x){return __builtin_ctz(x);}  
inline int ctz(LL x){return __builtin_ctzll(x);}  
inline int parity(int x){return __builtin_parity(x);}  
inline int parity(LL x){return __builtin_parityll(x);}  
inline int lg2(int a){return 31 - __builtin_clz(a);}  
inline int count_bits(int x){return __builtin_popcount(x);}  
inline int count_bits(LL x){return __builtin_popcountll(x);}  
  
} ;//using namespace BO;  
  
  
// <<= ` 2. Number theory .,  
  
namespace NT{  
  
inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;}  
inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;}  
inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;}  
inline int dff(int a, int b){a -= b; if (a < 0) a  += MOD; return a;}  
inline void MUL(int &a, int b){a = (LL)a * b % MOD;}  
inline int pdt(int a, int b){return (LL)a * b % MOD;}  
  
inline int sum(int a, int b, int c){return sum(sum(a, b), c);}  
inline int sum(int a, int b, int c, int d){return sum(sum(a, b), sum(c, d));}  
inline int pdt(int a, int b, int c){return pdt(pdt(a, b), c);}  
inline int pdt(int a, int b, int c, int d){return pdt(pdt(pdt(a, b), c), d);}  
  
inline int pow(int a, LL b){  
    int c(1); while (b){  
        if (b&1) MUL(c, a);  
        MUL(a, a), b >>= 1;  
    }  
    return c;  
}  
  
template<class T> inline T pow(T a, LL b){  
    T c(1); while (b){  
        if (b&1) c *= a;  
        a *= a, b >>= 1;  
    }  
    return c;  
}  
  
inline int _I(int b){  
    int a = MOD, x1 = 0, x2 = 1, q;  
    while (true){  
        q = a / b, a %= b;  
        if (!a) return (x2 + MOD) % MOD;  
        DEC(x1, pdt(q, x2));  
  
        q = b / a, b %= a;  
        if (!b) return (x1 + MOD) % MOD;  
        DEC(x2, pdt(q, x1));  
    }  
}  
  
inline void DIA(int &a, int b){MUL(a, _I(b));}  
inline int qtt(int a, int b){return pdt(a, _I(b));}  
  
  
inline int phi(int n){  
    int res = n; for (int i=2;sqr(i)<=n;++i) if (!(n%i)){  
        DEC(res, qtt(res, i));  
        do{n /= i;} while(!(n%i));  
    }  
    if (n != 1)  
        DEC(res, qtt(res, n));  
    return res;  
}  
template <class T>  
T GCD(T a, T b)  
{  
    return b ? GCD(b, a % b) : a;  
}  
template <class T>  
T extendGCD(T a, T b, T& x, T& y)  
{  
    if(!b) return x = 1, y = 0, a;  
    T res = extendGCD(b, a % b, x, y), tmp = x;  
    x = y, y = tmp - (a / b) * y;  
    return res;  
}  
template <class T>  
inline T inv(T w , T M){  
    if (M <= 0) return -1;  
    T x , y , d;  
    d = extendGCD(w , M , x , y);  
    if (d != 1) return -1;  
    x = ((x % M) + M) % M;  
    return x;  
}  
} ;//using namespace NT;  
  
// <<= ' A. Random Event ..  
  
namespace RNG{  
//srand((unsigned)time(NULL));  
inline unsigned int rand16(){return (bool(rand()&1) << 15) | rand();}  
inline unsigned int rand32(){return (rand16() << 16) | rand16();}  
inline ULL rand64(){return ((LL)rand32() << 32) | rand32();}  
inline ULL random(LL l, LL r){return rand64() % (r - l) + l;}  
int dice(){return rand() % 6;}  
bool coin(){return bool(rand() % 2);}  
} ;//using namespace RNG;  
  
// <<= ' B. Clock  
  
namespace CLOCK{  
DB s0, s1, rd, k, T;  
inline DB getTime(){  
#ifdef LOCAL  
    return 1.0 * clock() / CLOCKS_PER_SEC;  
#else  
    timeval tv;  
    gettimeofday(&tv, 0);  
    return tv.tv_sec + tv.tv_usec * 1e-6;  
#endif  
}  
  
inline void st0(DB _T = 0.98){T = _T, s0 = getTime();}  
inline void st1(DB _k = 1.618){k = _k, s1 = getTime();}  
inline void ed1(){rd = getTime() - s1;}  
inline DB elapsed(){return getTime() - s0;}  
inline bool safe(){return elapsed() + rd * k < T;}  
} //using namespace CLOCK;  
  
// <<= ' C. Temp .. .  
  
template<class T> PTT operator+(const PTT &p1, const PTT &p2) {  
    return PTT(p1.fi + p2.fi, p1.se + p2.se);  
}  
  
template<class T> PTT operator-(const PTT &p1, const PTT &p2) {  
    return PTT(p1.fi - p2.fi, p1.se - p2.se);  
}  
  
template<class T> PTT operator*(const PTT &lhs, T k){  
    return PTT(lhs.fi * k, lhs.se * k);  
}  
  
namespace Math{  
    typedef long long typec;  
    ///Lib functions  
    typec GCD(typec a, typec b)  
    {  
        return b ? GCD(b, a % b) : a;  
    }  
    typec extendGCD(typec a, typec b, typec& x, typec& y)  
    {  
        if(!b) return x = 1, y = 0, a;  
        typec res = extendGCD(b, a % b, x, y), tmp = x;  
        x = y, y = tmp - (a / b) * y;  
        return res;  
    }  
    ///for x^k  
    typec power(typec x, typec k)  
    {  
        typec res = 1;  
        while(k)  
        {  
            if(k&1) res *= x;  
            x *= x, k >>= 1;  
        }  
        return res;  
    }  
    ///for x^k mod m  
    typec powerMod(typec x, typec k, typec m)  
    {  
        typec res = 1;  
        while(x %= m, k)  
        {  
            if(k&1) res *= x, res %= m;  
            x *= x, k >>=1;  
        }  
        return res;  
    }  
    /*************************************** 
    Inverse in mod p^t system 
    ***************************************/  
    typec inverse(typec a, typec p, typec t = 1)  
    {  
        typec pt = power(p, t);  
        typec x, y;  
        y = extendGCD(a, pt, x, y);  
        return x < 0 ? x += pt : x;  
    }  
    /*************************************** 
    Linear congruence theorem 
    x = a (mod p) 
    x = b (mod q) 
    for gcd(p, q) = 1, 0 <= x < pq 
    ***************************************/  
    typec linearCongruence(typec a, typec b, typec p, typec q)  
    {  
        typec x, y;  
        y = extendGCD(p, q, x, y);  
        while(b < a) b += q / y;  
        x *= b - a, x = p * x + a, x %= p * q;  
        if(x < 0) x += p * q;  
        return x;  
    }  
    /*************************************** 
    prime table 
    O(n) 
    ***************************************/  
    const int PRIMERANGE = 1000000;  
    int prime[PRIMERANGE + 1];  
    int getPrime()  
    {  
        memset (prime, 0, sizeof (int) * (PRIMERANGE + 1));  
        for (int i = 2; i <= PRIMERANGE; i++)  
        {  
            if (!prime[i]) prime[++prime[0]] = i;  
            for (int j = 1; j <= prime[0] && prime[j] <= PRIMERANGE / i; j++)  
            {  
                prime[prime[j]*i] = 1;  
                if (i % prime[j] == 0) break;  
            }  
        }  
        return prime[0];  
    }  
    /*************************************** 
    get factor of n 
    O(sqrt(n)) 
    factor[][0] is prime factor 
    factor[][1] is factor generated by this prime 
    factor[][2] is factor counter 
 
    need: Prime Table 
    ***************************************/  
    ///you should init the prime table before  
    int factor[100][3], facCnt;  
    int getFactors(int x)  
    {  
        facCnt = 0;  
        int tmp = x;  
        for(int i = 1; prime[i] <= tmp / prime[i]; i++)  
        {  
            factor[facCnt][1] = 1, factor[facCnt][2] = 0;  
            if(tmp % prime[i] == 0)  
                factor[facCnt][0] = prime[i];  
            while(tmp % prime[i] == 0)  
                factor[facCnt][2]++, factor[facCnt][1] *= prime[i], tmp /= prime[i];  
            if(factor[facCnt][1] > 1) facCnt++;  
        }  
        if(tmp != 1)  
            factor[facCnt][0] = tmp, factor[facCnt][1] = tmp, factor[facCnt++][2] = 1;  
        return facCnt;  
    }  
    typec combinationModP(typec n, typec k, typec p)  
    {  
        if(k > n) return 0;  
        if(n - k < k) k = n - k;  
        typec a = 1, b = 1, x, y;  
        int pcnt = 0;  
        for(int i = 1; i <= k; i++)  
        {  
            x = n - i + 1, y = i;  
            while(x % p == 0) x /= p, pcnt++;  
            while(y % p == 0) y /= p, pcnt--;  
            x %= p, y %= p, a *= x, b *= y;  
            b %= p, a %= p;  
        }  
        if(pcnt) return 0;  
        extendGCD(b, p, x, y);  
        if(x < 0) x += p;  
        a *= x, a %= p;  
        return a;  
    }  
};//using namespace Math;  
// <<= ' 0. I/O Accelerator interface .,  
  
namespace Geo{  
    #define typec double  
    const typec eps=1e-8;  
    int dblcmp(double d){  
        if (fabs(d)<eps)return 0;  
        return d>eps?1:-1;  
    }  
    int sgn(double a) {return a<-eps?-1:a>eps;}  
    inline double sqr(double x){return x*x;}  
    struct Point2D{  
        typec x,y;  
        Point2D(){}  
        Point2D(typec _x,typec _y):x(_x),y(_y){};  
        void input(){  
            scanf("%lf%lf",&x,&y);  
        }  
        void output(){  
            printf("%.2f %.2f\n",x,y);  
        }  
        bool operator==(Point2D a)const{  
            return dblcmp(a.x-x)==0&&dblcmp(a.y-y)==0;  
        }  
        bool operator<(Point2D a)const{  
            return dblcmp(a.x-x)==0?dblcmp(y-a.y)<0:x<a.x;  
        }  
        typec len(){  
            return hypot(x,y);  
        }  
        typec len2(){  
            return x*x+y*y;  
        }  
        Point2D operator + (const Point2D &A) const{  
            return Point2D(x + A.x , y + A.y);  
        }  
        Point2D operator - (const Point2D &A) const{  
            return Point2D(x - A.x , y - A.y);  
        }  
        Point2D operator * (const typec _x) const{  
            return Point2D(x * _x , y * _x);  
        }  
        typec operator * (const Point2D &A) const{  
            return x * A.x + y * A.y;  
        }  
        typec operator ^ (const Point2D &A) const{  
            return x * A.y - y * A.x;  
        }  
        Point2D operator / (const typec _p) const{  
            return Point2D(x / _p , y / _p);  
        }  
        typec distance(Point2D p){  
            return hypot(x-p.x,y-p.y);  
        }  
        Point2D add(Point2D p){  
            return Point2D(x+p.x,y+p.y);  
        }  
        Point2D sub(Point2D p){  
            return Point2D(x-p.x,y-p.y);  
        }  
        Point2D mul(typec b){  
            return Point2D(x*b,y*b);  
        }  
        Point2D div(typec b){  
            return Point2D(x/b,y/b);  
        }  
        typec dot(Point2D p){  
            return x*p.x+y*p.y;  
        }  
        typec det(Point2D p){  
            return x*p.y-y*p.x;  
        }  
        typec rad(Point2D a,Point2D b){  
            Point2D p=*this;  
            return fabs(atan2(fabs(a.sub(p).det(b.sub(p))),a.sub(p).dot(b.sub(p))));  
        }  
        Point2D trunc(typec r){  
            typec l=len();  
            if (!dblcmp(l))return *this;  
            r/=l;  
            return Point2D(x*r,y*r);  
        }  
        Point2D rotleft(){  
            return Point2D(-y,x);  
        }  
        Point2D rotright(){  
            return Point2D(y,-x);  
        }  
        Point2D rotate(Point2D p,typec angle)//ÈƵãpÄæʱÕëÐýתangle½Ç¶È  
        {  
            Point2D v=this->sub(p);  
            typec c=cos(angle),s=sin(angle);  
            return Point2D(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c);  
        }  
    };  
  
    typec cross(Point2D a,Point2D b,Point2D c){  
        return (b.sub(a)).det(c.sub(a));  
    }  
}using namespace Geo;  
  
template<class T> inline T& RD(T &x){  
    //cin >> x;  
    //scanf("%d", &x);  
    char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + c - '0';  
    //char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0';  
    return x;  
}  
  
int ____Case; template<class T> inline void OT(const T &x){  
    //if (x == -1) printf("Case %d: NO\n", ++____Case);  
    //else printf("Case %d: %d\n", ++____Case, x);  
    //printf("%I64d\n", x);  
    //printf("%.2lf\n", x);  
    printf("%d\n", x);  
    //cout << x << endl;  
}  
  
// .........................................................................................

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值