【精】Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framewo

Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement

doi:https://doi.org/10.1016/j.tra.2021.09.010
论文链接:https://www.sciencedirect.com/science/article/pii/S0965856421002408

在这里插入图片描述

@article{RFFBS2021data,
address = {Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China},
author = {Chang, Ximing and Wu, Jianjun and Sun, Huijun and Correia, Goncalo Homem de Almeida and Chen, Jianhua},
doi = {10.1016/j.tra.2021.09.010},
issn = {0965-8564},
journal = {TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE},
mendeley-groups = {rebike21-23},
pages = {235--260},
title = {{Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement}},
volume = {153},
year = {2021}
}

摘要

自由浮动共享单车是一种创新且可持续的出行方式,共享单车可以在街道上的任何适当位置取车和归还,而不仅仅是在停靠站。然而,在这些系统中,出现了两个主要问题。一个是区域之间自由浮动共享单车(FFSB)的不平衡,这是由于单程旅行,另一个是必须带去维修的损坏自行车。在这项研究中,提出了一种动态重新定位运营和损坏自行车的建模框架,该框架首先使用深度学习算法预测共享自行车的数量位置。需求预测模型采用嵌入注意力机制的编码器-解码器架构,进一步增强模型的预测能力和灵活性。然后,提出了FFSB搬迁的数据驱动优化模型,该模型应用多周期优化来动态规划全天的搬迁活动。该文针对重定位问题,提出了一种融合了变邻域搜索(VNS)和增强模拟退火(ESA)算法的混合元启发式算法,从数值算例中观察到了满意的性能。我们使用来自中国北京的真实世界FFSB数据测试了所提出的框架。结果表明,及时重新安置可操作的自行车和损坏的自行车可以降低用户在系统中发现损坏自行车的概率,但会导致更高的搬迁成本。在高峰时段,鉴于搬迁资源有限,仅考虑运营自行车进行搬迁是最有效的策略。在一天中的这些时候,当务之急是专注于向供应不足的客户提供自行车。

关键字

  • Free-floating bike-sharing自由漂浮的共享单车
  • Demand forecasting 需求预测 Bike
  • relocation 自行车搬迁 Multi-period optimization多周期优化
  • Damaged bikes’ collection损坏的自行车收藏

1. 简介

共享单车系统提供移动服务,可在短时间内将可用的自行车用于共享使用。传统的车站共享单车应停放在固定的停靠站和售货亭机器上,这通常会导致投诉,因为离目的地很远,或者没有免费停车位。自由浮动共享单车 (FFSB) 是一种新兴的出行方式,在这种模式下,共享单车几乎可以停放在街道网络的任何地方。随着FFSB的急剧扩张,通过提供更灵活的出行方式选择,可以缓解拥挤的街道和不足的公共交通系统(Li et al., 2019, Ma et al., 2020)。门到门的旅行功能允许共享单车在短途旅行中代替汽车,或者覆盖从公共交通站到最终目的地的最后一英里。此外,FFSB是一种环保的交通方式,在旅行过程中不会产生污染,为向低碳和绿色社会的过渡做出贡献(Lin et al., 2018)。新一代FFSB依靠移动互联网和全球定位系统(GPS),实现自行车使用、支付和数据传输。共享单车系统在全球许多城市都很受欢迎。例如,2018 年 2 月,中国北京的街道上约有 220 万辆自行车(News,2018),其中 62.90% 的客户通常使用共享单车作为公共交通出行的最后一英里连接。目前,在北京因 COVID-19 大流行而解除封锁后,共享单车的使用量飙升。 共享单车在疫情期间提供了一种安全的出行方式,因为与地铁等公共交通工具相比,共享单车感染病毒的风险较低(中国日报,2020 年)China daily News, “Rides on shared bikes returning to normal amid the epide-mic in Beijing,” April, 2020. [Online]. Available: https://www.chinadaily.com.cn/a/202004/01/WS5e848834a310128217283b73.html

FFSB提供各种运输方式之间的无缝连接(Ma et al., 2019)。然而,共享单车的热潮也出现了一些问题,例如大量损坏的自行车和拥挤的停车区,有时几乎没有空间供行人行走。在基于车站的自行车共享系统中,车站可能会有自行车不足或过剩,或者在少数情况下是自我平衡的。在自由浮动的共享单车系统中,用户可以在任何地方停车,因此无需担心全站的问题。然而,共享单车的空间和时间分布仍然不平衡,在高峰时段可能很难在行程起点附近找到可用的 FFSB(Du et al., 2019)。此外,由于 FFSB 分散在不同的地方,并且它们的位置可能会在一天中的不同时间在不同区域之间发生变化,因此再平衡操作甚至可能比传统的基于站点的自行车共享系统更具挑战性(Caggiani 等人,2018 年)。此外,随着共享单车系统的快速发展,由于法规和回收计划不足,大量损坏的自行车被遗弃在街上。例如,座椅的高度可能不再可调,或者制动器可能出现故障,这极大地影响了用户体验,并增加了使用此类系统的安全风险(Lu 等人,2019 年)。因此,应研究将损坏自行车的回收利用纳入自由浮动共享单车系统的高效搬迁策略。

从本质上讲,共享单车的再平衡有两种策略(Laporte et al., 2018, Shui and Szeto, 2020)。第一种是基于用户的再平衡方法(Pfrommer 等人,2014 年,Heitz 等人,2018 年,Pan 等人,2019 年)。在该策略中,鼓励用户在可行的地点取回共享单车,以平衡当地分布。Pfrommer等人(2014)设计了一种动态变化的奖励机制,以鼓励客户将共享单车停放在附近未充分利用的车站,从而降低使用专职员工重新分配的预期成本。Pan et al. (2019) 在马尔可夫决策过程中模拟了无桩共享单车系统中的再平衡问题。他们开发了一种深度强化学习算法,以激励用户帮助重新平衡整个系统。结果表明,所提框架的性能接近于24时隙前瞻优化。**第二种是基于操作员的重新平衡方法,通过雇用重新安置人员和车辆从冗余站点收集自行车并将其运送到自行车太少的站点来完成重新定位过程。**在实际场景中,忽略现有损坏的自行车会影响出行需求预测和再平衡优化(Alvarez-Valdes et al., 2016, Wang and Szeto, 2018, Du et al., 2020)。如果损坏的共享单车停留在一个区域而没有被收集,工作人员可能会将其误认为是运营中的共享单车,因此不会将新单车分配到该区域。从用户的角度来看,扫描二维码解锁自行车后,可能会发现无法使用,从而耽误了他们的行程。 损坏的自行车不仅影响了用户的旅行体验,还增加了一个安全问题,这个问题可能只有在旅行后期才能被发现。因此,在FFSB搬迁过程中,应将损坏的共享单车收集起来,直接搬回仓库进行维修,同时将运营的自行车重新分配到需要的地方。

FFSB的动态搬迁应考虑三个挑战:用户需求预测、装载数量确定和车辆路线(Regue and Recker, 2014, Zhang et al., 2017, Legros, 2019)。FFSB的旅行空间和时间波动可能相当大,如果没有及时的搬迁策略,这可能会加剧供需失衡。因此,准确预测FFSB的使用情况为重新平衡提供了有用的信息,并提高了共享单车系统的运营效率(Caggiani等人,2018年,Xu等人,2018年)。近年来,深度学习在更复杂的预测任务中得到了迅速发展。人工智能 (AI) 算法已被用于旅行需求预测,例如循环神经网络 (RNN) 和长短期记忆 (LSTM) 网络。因此,可以潜在地捕捉共享单车需求的时空特征,以提高预测精度(Liu et al., 2019, Hao et al., 2019)。数据驱动的方法将数据收集、分析和建模集成到一个完整的连续过程中。这些决策是基于从实际数据中获得的见解,而不是直觉或先验的最优性规范概念。数据驱动的建模对数据结构没有严格的假设(Solomatine and Ostfeld, 2008, Huo et al., 2020)。通过持续收集数据和更新共享单车出行记录,可以获得动态搬迁的有用信息。数据驱动的建模有助于使用历史信息来预测未来需求,并使用预测的需求分配搬迁任务,从而避免在错误的假设和偏见上执行。

本文提出了一种兼具运行和损坏FFSB的综合数据驱动的自行车搬迁优化方法。整个方法包含三个部分:FFSB出行需求预测、搬迁需求确定和数据驱动的搬迁。综上所述,本文的主要贡献如下:

  • 本文建立了一种新的基于注意力的客流(ATTPF)预测模型来预测FFSB的短期流入和流出,该模型采用嵌入注意力机制的编码器-解码器架构,增强了模型的预测能力和灵活性。 We establish a novel attention-based passenger flow (ATTPF) predicting model to forecast the short-term inflow and outflow of FFSB, which adopts the Encoder-Decoder architecture embedded with the attention mechanism to enhance the model’s prediction ability and flexibility.

  • 基于预测的需求缺口,我们提出了一个数据驱动的共享单车搬迁优化模型,该模型考虑了受损自行车的回收情况。应用多周期优化来处理随时间变化的搬迁需求。使用历史旅行记录数据,根据用户的旅行行为检测损坏的共享单车数量.Based on the predicted demand gap, we propose a data-driven optimization model for bike-sharing relocation that considers the damaged bikes’ collection. The multi-period optimization is applied to handle the time-varying relocation demand. The number of damaged shared bikes is detected based on the users’ travel behavior using the historical travel records data.

  • 我们开发了一种新的混合元启发式算法,该算法结合了变邻域搜索(VNS)和增强模拟退火(ESA)算法,以解决中国北京的大规模实词FFSB系统。We develop a new hybrid metaheuristic algorithm that incorporates variable neighborhood search (VNS) and the enhanced simulated annealing (ESA) algorithm to solve the large-scale real-word FFSB system in Beijing, China.

本文的其余部分组织如下。第2节回顾了有关短期自行车需求预测和共享单车搬迁的文献。第 3 节描述了每个模型背后的整个框架和方法。第 4 节提供了数据描述和分析。我们用真实世界的案例评估了我们的方法,并在第5节中讨论了结果。最后,在第 6 节中得出结论。

2. 文献综述

2.1. 关于短期自行车需求预测的研究

共享单车系统受到时空出行需求波动的影响,导致搬迁服务效率低下和运营成本高。一方面,共享单车的短缺阻碍了自行车的使用。另一方面,如果系统中的自行车过多,未使用的自行车可能会占用大量公共空间,不必要地增加自行车公司的成本。因此,动态共享单车再平衡有助于这些系统的管理,其中准确预测需求是基本组成部分(Sohrabi et al., 2020, Shui and Szeto, 2020, Chang et al., 2021)。

在以前的文献中,自行车的短期需求预测基于经典的统计方法,包括自回归综合移动平均线 (ARIMA) 及其变体(Yoon 等人,2012 年)。近年来,得益于海量出行数据和更高的计算能力,通过更多数据驱动的先进技术,可以揭示交通系统中的动态特征。一些机器学习模型,包括随机森林 (RF)、支持向量机 (SVM) 和神经网络模型已广泛用于共享单车出行需求预测(Ashqar et al., 2017, Fournier et al., 2017, Wang and Kim, 2018)。Ashqar 等人(2017 年)使用随机森林 (RF) 和最小二乘提升 (LSBoost) 算法对旧金山车站的可用共享自行车进行建模。结果表明:空间相关台站和预测视界时间是显著的预测因子。Fournier等人(2017)使用正弦模型估计了季节性自行车使用模式,该模型能够捕获月度和年度尺度的平均每日出行需求。尽管机器学习模型可以有效地识别短期客流预测的时间趋势和模式,但由于其“黑盒”性质,这些模型缺乏对预测结果的解释。

还引入了深度学习方法,用于预测共享单车出行需求。不同的深度神经网络结构可以有效提取出行需求的时空特征,提高预测精度。Xu et al. (2018) 利用深度学习算法预测了动态 FFSB 需求,其中 LSTM 用于预测不同交通分析区域的短期出行产生和吸引力。Lin等人(2018)基于图卷积网络(GCN)预测了基于码头的共享单车网络的每小时需求,该网络可以有效地学习站点之间的隐藏相关性。在神经网络训练过程中,模型可能无法记忆所有输入特征,从而降低其性能。注意力机制的干预使模型能够特别关注相关输入变量的特定部分,而忽略深度神经网络中的其他部分。He et al. (2020) 使用图注意力卷积神经网络研究了共享单车站的流量预测。融合注意力机制捕获并区分了站点间的相关性,从而提高了模型的准确性和鲁棒性。

2.2. 关于基于运营商的共享单车搬迁的研究

在基于运营商的共享单车搬迁中,运营商驾驶搬迁车辆在不同站点之间重新平衡共享单车,以满足用户的需求。Laporte等人(2018)调查了共享出行系统中出现的主要运营研究问题,包括车站位置问题、车站库存问题和车辆重新定位问题。Shui and Szeto (2020)回顾了关于共享单车服务规划问题的论文。他们强调,在动态自行车重新定位操作中,应考虑用户的需求预测、负载确定和车辆路线。在表1中,我们根据搬迁需求的确定、目标、求解算法以及是否考虑损坏的自行车,总结了有关基于运营商的共享单车搬迁的科学出版物。
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述FFSB再平衡问题可以采用静态或动态方法进行建模。静态再平衡由工作人员按照预定的时间表执行,而用户在重新平衡任务期间不能对自行车进行操作。此过程通常在用户数量较少的夜间进行。Liu等人(2018)研究了异构车队的共享单车再平衡问题,其中允许搬迁车辆多次访问站点。Usama 等人(2020 年)制定了静态共享单车再平衡操作,同时考虑了有缺陷的自行车。数值示例表明,随着网络中故障自行车的增加,再平衡卡车必须行驶更长的路径,并为故障自行车腾出更多空间。动态再平衡发生在白天,同时考虑到需求变化的实时情况。Zhang等人(2017)将共享单车的动态重新定位表述为时空网络流模型,其中考虑了用户不满预测、车辆路线和自行车重新定位。Caggiani等人(2018)预测了每个时空区域可用自行车的趋势,然后提出了一个用于动态实时自行车重新分配的决策支持系统。为了应对时变需求,Shui 和 Szeto (2018) 提出了一个动态绿色自行车重新定位的框架,其中动态问题通过滚动地平线方法分解为几个静态子问题。

在以往的共享单车再平衡研究中,目标函数包括:最小化总出行成本(Dell’Amico et al., 2014)、最小化总出行时间(Angeloudis et al., 2014)、最小化总需求不满(Szeto and Shui, 2018)等。Wang和司徒(2018)将运营中的自行车和损坏的自行车重新安置在共享单车网络中,以实现自行车需求和供应之间的完美平衡,目的是最大限度地减少所有车辆的总二氧化碳排放量。在专注于现实世界问题的共享单车再平衡研究中,也提出了多目标模型。Usama et al. (2019b) 构建了一个混合整数线性程序,以同时最小化用户的不满、车辆路径成本和车辆等待时间。对于大规模的共享单车项目,采用不同的算法来获得有效和高效的解决方案,例如迭代禁忌搜索(Ho and Szeto, 2014)、分支和边界算法(Kadri et al., 2016)、大型邻域搜索方法(Ho and Szeto, 2017, Pal and Zhang, 2017)、增强的化学反应优化(Szeto et al., 2016, Liu et al., 2018)、增强的人工蜂群算法(Shui and Szeto, 2018)和贪婪遗传启发式算法(Du et al., 2020)等。

到目前为止,可以说在解决共享单车再平衡问题的方法上已经取得了一些突破和创新。但是,仍然存在一些问题。首先,大多数研究都是基于车站的共享单车系统。但新兴的FFSB正在迅速发展,内置GPS可以记录海量数据,以反映用户的出行模式。此外,数据驱动方法中的建模考虑了与时间相关的需求,其中当前时期的更新数据将加入历史数据集以得出新的统计数据。其次,有必要在动态搬迁过程中考虑损坏的自行车,因为这种现象会降低服务质量和使用共享单车方案的整体体验。如果没有有效的搬迁行动,受损的共享单车被遗弃在街上,导致更多的交通拥堵,这是对资源的巨大浪费。此外,骑可能损坏的自行车是不安全的,所有这些危险都可能导致车祸。为了满足用户的出行需求,需要在各区域之间重新分配运营自行车,而损坏的自行车应被收集并运回仓库进行维修。第三,动态再平衡问题在很大程度上取决于对系统使用情况的准确预测(Caggiani et al., 2018)。深度学习中的新预测算法可以捕捉出行需求的时空波动特征,为重新平衡系统提供有用的信息,从而改善用户体验并更好地管理系统。

第3章 方法论

在本文中,我们提出了一种新的综合数据驱动的自行车搬迁框架,如图 1 所示,该框架同时具有可操作和损坏的 FFSB。整个框架包括 FFSB 旅行需求预测、搬迁需求确定和数据驱动的搬迁。该框架从预测系统运行区域内共享单车的数量和位置开始,到搬迁路线决策结束。采用多周期优化方法对搬迁活动进行动态规划。
在这里插入图片描述
图 1.整个框架的架构。

3.1. 基于注意力的FFSB旅行需求预测

3.1.1. Long Short-Term memory network

时间序列模型被广泛应用于FFSB的短期需求预测,因为它随一天中的时间而变化。在深度学习理论中,为时间序列建模开发了循环神经网络(RNN)和长短期记忆(LSTM)网络。这些神经网络既考虑了当前状态,也考虑了时间步长之间的连续反馈来做出预测。LSTM的开发是为了避免在训练传统RNN时可能遇到的梯度消失和梯度爆炸问题,通过引入一个存储单元 c t c_t ct 和三个门,包括一个输入门 i t i_t it、一个遗忘门 f t f_t ft和一个输出门 o t o_t ot,如图2a所示。

在这里插入图片描述图 2.(a) LSTM 和 (b) 双向 LSTM 的架构。

在这里插入图片描述在方程中(1)–(6), x t x_t xt是 LSTM 单元在时间 t t t的输入向量, h t − 1 h_{t-1} ht1是 在时间 t − 1 t-1 t1 的隐藏状态向量。 W i x , W i h , W f x , W f h , W o h , W c x W_{ix},W_{ih},W_{fx},W_{fh},W_{oh},W_{cx} Wix,Wih,Wfx,Wfh,Woh,Wcx W c h W_{ch} Wch 是三个门的权重矩阵,而 b i , b f , b o , b c b_i,b_f,b_o,b_c bi,bf,bo,bc是对应的偏置向量。然后使用输入门 i t i_t it和遗忘门 f t f_t ft 的结果来计算方程(5)中的当前细胞状态 c t c_t ct,确保细胞状态由当前细胞状态 和长期记忆控制。算子 ∘ 是指 Hadamard 积,它是两个向量的标量积 (Xu et al., 2018, Ma et al., 2018)。

然而,在进行预测时,简单地堆叠多层LSTM单元无法对整个输入序列的特征进行建模(Hao等人,2019)。此外,当输入序列变长时,LSTM结构的预测精度也会在一定程度上降低,尤其是单向LSTM。双向LSTM(Bi-LSTM)的思想来自双向RNN(Schuster和Paliwal,1997)。单向 LSTM 仅保留过去的信息,因此只有信息从后向前流动。然而,在双向LSTM架构中,信息不仅可以从前向后流动,还可以从前向后流动,具有图2b中两个独立的隐藏层。同样,前向层和后向层的参数也使用方程更新。(1)–(6).事实证明,在短期客流预测中,双向网络明显优于单向网络(Ma et al., 2018)。

3.1.2. 基于注意力的预测框架 Attention-based predicting framework

编码器-解码器架构提供了一种使用深度神经网络的标准方法来处理序列到序列的预测问题。编码器进程通过输入时间步长将整个序列编码为固定长度的上下文向量。然后,解码器进程对该向量进行解码并进行预测。该模型的一个潜在局限性是,它需要将输入序列的所有必要信息压缩到一个固定长度的向量中,这无法对长输入的时间序列数据进行建模。注意机制通过在图 3 中的编码器-解码器架构中提供更丰富的上下文 c u c_u cu 来释放固定长度的内部表示。它有助于神经网络识别输入的哪些时间步长更相关,从而允许解码器特别注意,这通常加快了学习速度并提高了模型预测的技能(Bahdanau等人,2014)。

在这里插入图片描述
图 3.具有注意力机制的编码器-解码器架构。

在基于注意力的架构中,选择双向LSTM网络来构建编码器网络,并选择LSTM网络作为图3中的解码器网络(Hao et al., 2019)。在对输出 y u y_u yu进行预测时,注意力分数 a u v a_{uv} auv 指定了解码器在方程中进行预测时应注意多少编码器隐藏状态 。(9)–(11).式(10)是用于归一化注意力分数的Softmax函数。 k k k是输入序列的长度, F C FC FC表示全连接神经网络, 用于计算式(11)中编码器网络中的注意力分数。

在这里插入图片描述通过对上下文向量 c u c_u cu进行积分,在方程(12)中计算LSTM隐藏状态 s u s_u su ,然后用于预测目标 y u y_u yu .
在这里插入图片描述历史数据包含预测未来旅行需求的宝贵信息。然而,在处理时间序列数据时,需要不同的历史时间步长,并给予不同的关注。本研究提出了一种新的基于注意力的客流(ATTPF)预测模型,该模型采用嵌入注意力机制的编码器-解码器架构,进一步增强了模型的预测能力和灵活性。此外,由于共享单车是一种户外出行方式,因此出行需求更容易受到一些外部特征的影响,例如星期几、一天中的小时、天气数据(温度、风速)和空气质量数据(AQI)。动态收集多源数据并输入到 ATTPF 模型中。详细地讲,历史共享单车出行需求由编码器双向LSTM提取。外部变量被输入到一个全连接的神经网络中,用于特征表示学习,其中分类变量首先被转换为独热编码形式。串联层用于合并多源数据。融合表示用于生成更丰富的上下文向量,然后通过LSTM网络进行解码,以在每个时间步进行预测。模型的完整结构如图4所示。

在这里插入图片描述
图 4.ATTPF 预测模型的结构。

3.2. 数据驱动的共享单车搬迁模型

3.2.1. 问题描述

基于运营商的FFSB搬迁可以被视为取货和送货问题(pickup-and-delivery problem)。 假设自行车再平衡网络是一个完整的有向图 G = ( V , A ) G=(V,A) G=(V,A),并且顶点集 V = { 1 , ⋯   , n } V=\{1,\cdots,n\} V={1,,n}被分割成非零不平衡区。由于不同区域的旅行需求波动(fluctuating travel demand in different zones),每个区域在周期 t t t有多个请求,表示为 q i t , i ∈ { 1 , ⋯   , n } q_i^t,i\in \{1,\cdots,n\} qit,i{1,,n}. 从取货区收集的运营共享单车可以转移到送货区或由搬迁人员返回仓库。

在现实世界的共享单车搬迁过程中,需要考虑几个约束条件(1)从仓库部署多辆车,以满足每个区域的搬迁需求;(2)涉及两种类型的共享单车。 运营中的自行车在不同区域之间重新分配以满足旅行需求,而损坏的自行车应收集并送回仓库进行维修,因此不能将其转移到其他区域。当然,一些新自行车也将在车厂投入使用,并由搬迁车辆分配到所需的区域,从而确保自由浮动共享单车系统的正常运行。

3.2.2. 确定所需的自行车搬迁

本文将共享单车的搬迁分为两种类型:运营单车和损坏单车。所建立的ATTPF模型预测了城市各区域FFSB的短期流入和流出. 对于动态 FFSB 搬迁,该日分为 T T T个时段, t ∈ { 0 , 12 , ⋯   , t , ⋯   , T } t\in \{0,12,\cdots,t,\cdots,T\} t{0,12,,t,,T}。对于区域 i i i给定时期 t t t短期回升需求(流出)和下降需求(流入)表示为 p d i t pd^t_i pdit d d i t dd_i^t ddit 。 此外,从历史数据中检索可用的运营自行车(积压的自行车) a i t a_i^t ait的数量损坏的共享自行车 b i t b_i^t bit 的数量。我们表示 s i t s_i^t sit为FFSB在时间 t t t在区域 i i i内的净流量(net flow),它被定义为方程(13 )中预测的流 入 d d i t dd_i^t ddit和流出 p d i t pd_i^t pdit之间的差值。搬迁 q i t q_i^t qit 所需的 FFSB 数量来自期 a i t a_i^t ait 初积压的自行车数量,加上 Eq.14 中预测的车辆到达量 d d i t dd_i^t ddit 与客户占用的自行车 p d i y pd_i^y pdiy之间的差额(Santos 和 Correia,2019 年)。在这里,考虑了每个区域的共享单车 s s i t ss_i^t ssit的安全库存。
s i t = d d i t − p d i t , t ∈ { 0 , 1 , ⋯   , t , ⋯   , T } ( 13 ) s_i^t=dd_i^t-pd_i^t,t\in \{0,1,\cdots,t,\cdots,T\}\quad (13) sit=dditpdit,t{0,1,,t,,T}(13)
q i t = a t − s s i t + d d i t − p d i t , a i t > 0 ( 14 ) q_i^t=a^t-ss_i^t+dd_i^t-pd_i^t,a_i^t>0 \quad (14) qit=atssit+dditpdit,ait>0(14)

Eq.(13) 净流量 s i t s_i^t sit=流入-流出
Eq.(14) 搬迁数量 q i t q_i^t qit=积压量 a i t a_i^t ait-安全库存值 s s i t ss_i^t ssit+流入-流出

q i t q_i^t qit的正值 表示该区域 i i i是一个拾取区域 ,其中 q i t q_i^t qit的数值表示应删除 自行车的数量。相反,负值 表示该区域 i i i是交付区域,其中数值表示应提供的车辆。

损坏的FFSB不仅会影响用户体验,还会破坏需求预测和搬迁任务。因此,有必要在共享单车系统中同时考虑运营和损坏的共享单车搬迁。一般来说,当找到附近的自行车时,用户会用智能手机扫描二维码来解锁 FFSB,然后开始骑行。之后,当他们到达目的地时,他们锁上共享自行车并步行。一旦用户解锁损坏的自行车,他们可能会在骑行后发现这个问题。发生这种情况时,用户将立即停止骑这辆自行车并解锁附近的新自行车。需要注意的是,用户在遇到可操作的共享单车和损坏的共享单车时有不同的出行行为。因此,我们设计了一种有效的算法,根据用户的出行行为来发现损坏的FFSB假设同一用户在短时间间隔内(例如少于 3 分钟)连续解锁两辆共享单车,并且第一次行驶距离很短(例如,小于 200 米),我们认为第一辆解锁的共享单车损坏或使用受限,因此需要维修算法 1 介绍了从历史旅行记录中检测损坏的 FFSB 的详细过程。

算法1 在自由浮动的自行车共享系统中检测损坏的自行车
在这里插入图片描述

3.2.3. 搬迁模型的制定

在本节中,我们提出了一个考虑回收损坏自行车的多期搬迁模型。表2中列出了符号。
在这里插入图片描述在这里插入图片描述在这里插入图片描述FFSB搬迁问题可以用数学公式表示如下:
在这里插入图片描述

在这里插入图片描述
动态搬迁在白天实施,并考虑了FFSB的实时使用情况。本文采用多周期优化来处理时变需求,将整个服务时间的动态过程分解为具有固定持续时间的连接良好的静态问题。如图 5 所示,我们根据预测的需求缺口和每个时期检测到的损坏 FFSB 数量来确定每个区域的搬迁需求。每个时期的重定位问题是一个静态问题,通过所提出的混合元启发式算法进行求解。在每个时段结束时(上一时段除外),搬迁车辆将停留在最后服务区,等待下一时段更新的搬迁路线。要重新安置的运营自行车以及要在每个区域收集的损坏自行车都将在下一阶段进行更新,并用于确定新的路线策略。具体流程如下。
图 5.动态更新数据的多周期优化方法
在这里插入图片描述

  1. 在第一阶段,搬迁车辆从仓库出发执行搬迁任务。创建一个与其他区域的距离为 0 的虚拟仓库(dummy depot),这是该时期的结束仓库。搬迁模式(The relocation model ) 要求所有用过的车返回虚拟仓库,但实际上车辆将停留在最后的服务区域。每辆车的位置、运行和损坏的自行车的负载都会被存储起来,这些都是传递给下一个规划期的输入,用于路线决策(route decision-making).
  2. 在下一阶段,将动态更新搬迁区域集(the relocated zone set) V t V_t Vt始发仓库集(departure depot set) D t D_t Dt ,以确定新的搬迁路线。路线的起始位置是最后访问区域,每辆车上有相应的负载。此外,如果有空位,搬迁车辆也会从仓库出发。在此期间,部分车辆可能不会执行搬迁任务,它们将停留在最后服务区域,等待随后一段时间的搬迁活动。在期间结束时(最后一个期间除外),所有用过的车将返回虚拟仓库。重复此过程,直到建模视界(modeling horizon)结束。
  3. 在最后一个时期,搬迁车辆应在仓库结束。考虑到前期搬迁车辆中收集了一定数量的损坏自行车,因此需要在仓库卸货。一方面,损坏的自行车可以及时送回仓库进行维修。另一方面,损坏的自行车可以卸下,以避免占用太多空间来重新安置运营自行车。

3.3. 混合元启发式求解方法(A hybrid metaheuristic solution approach)

针对各时期的搬迁路径确定,提出了一种新的混合元启发式算法,该算法结合了变邻域搜索(VNS)和增强模拟退火(ESA)算法来满足上述约束条件。变量邻域搜索 (VNS) 是一种用于解决一组组合优化和全局优化问题的元启发式方法(Hansen 等人,2010 年,Ranjbar 和 Saber,2020 年)。所提出的VNS-ESA解决方案方法基于邻域搜索阶段的VNS框架。在算法 2 中,VNS-ESA 方法从使用 Clarke-Wright 算法生成的初始解决方案开始(Altinel 和 Oncan,2005 年)。然后,通过振荡过程生成一组邻域结构。我们开发了一种ESA算法,该算法基于VNS的最佳邻域,对本地搜索的接受概率进行了修改。这两种算法以迭代方式执行,直到达到确定的迭代步骤。摇晃过程的作用使算法能够从局部最小值中逃脱,并有效地探索搜索空间。用于局部搜索的 ESA 用于加强对有前途的解决方案周围的邻域的探索,并防止解决方案被困在局部最优值中。

Clarke-Wright 算法
思路:2条路径合并成1条后能节省费用,就合并
《旅行商(TSP)问题求解算法合集》
《| 电动汽车VRP问题综述:变种问题及算法》
《车辆路径问题Clarke-Wright算法的改进与实现 》

在这里插入图片描述通过摇晃程序(shaking procedure),产生了几个新的邻域结构( neighborhood structures)(Hemmelmayr等人,2009)。在振荡过程中介绍了两个交换操作符( exchange operators),即图 6 中的Cross-exchange 和 Cross-exchange。我们使用这些算子来交换当前解决方案中两条路径上的节点,以生成新的邻域结构。对于每次摇动执行,由于路由解是方向性的,因此选择交叉交换算子的概率大于 iCross-exchange 算子的概率。在路径交换过程中,应尽量保持路线的原始方向,以增加获得可行解的可能性。

Fig. 6. The Cross-exchange and the iCross-exchange operators.
在这里插入图片描述提出 ESA 算法在每次迭代中搜索可能的最佳路径。模拟退火 (SA) 是一种用于逼近全局最优的概率算法(Kirkpatrick 等人,1983 年,Wei 等人,2018 年)。SA基于偶尔接受最差解(the worst solutions )的想法,以期逃避当前的局部最优解(current local optimal solutions)。具体来说,一旦在搜索过程中确定了更好的邻域解决方案,就会接受这种移动,并替换当前的解决方案。此外,在方程(31)中,SA 中会接受一个较差的邻域解,并有一定的概率 P P P ,以避免获得局部最优。接受概率由两个参数 T T T Δ c o s t \Delta cost Δcost . T T T 称为温度,在搜索过程中逐渐降低。 Δ c o s t \Delta cost Δcost是new solution与current solution 之间的适应度差异SA 算法将停止,直到达到足够的最终温度。在ESA 算法中,方程(32)中提出了修正的接受概率,以防止解更有效地被困在局部最优解中。具体来说,接受new solution 不仅考虑了与current solution的差距 Δ c o s t \Delta cost Δcost, 还考虑了与已达到的最优解决方案的差距, Δ c o s t ′ \Delta cost' Δcost.

P = e − Δ c o s t / T P=e^{-\Delta cost /T} P=eΔcost/T Eq.(31)
P ( l s , l s ′ , l s b , T ) = e x p ( − Δ c o s t / T ) e x p ( − Δ c o s t ′ / T ) P(ls,ls',ls_b,T)=\frac{exp(-\Delta cost /T)}{exp(-\Delta cost' /T)} P(ls,ls,lsb,T)=exp(Δcost/T)exp(Δcost/T) Eq.(32)

where Δ c o s t = f ( l s ′ ) − f ( l s ) \Delta cost=f(ls')-f(ls) Δcost=f(ls)f(ls); Δ c o s t ′ = f ( l s b ) − f ( l s ′ ) \Delta cost'=f(ls_b)-f(ls') Δcost=f(lsb)f(ls);

l s ls ls:是当前solution
l s ′ ls' ls:是邻居solution
l s b ls_b lsb:是当前最佳solution;
f ( ) f() f():是公式(15)的目标函数值

ESA的算法在 Alg3中描述。
在这里插入图片描述在这里插入图片描述

在ESA算法 中,通过局部搜索算子生成新的可行解(new feasible solution) l s ′ ls' ls,用于加强对有前景的解(promising solutions ) 周围邻域的探索. promising solution 可能通过局部搜索算子达到局部最优进而可能全局最优。在图7(a)中,通过交换初始游览(initial tour)中两个访问区域的位置来执行2-exchange operator(Hernando等人,2011)。2-opt 方法旨在找到一条穿过自身的路径并对其进行重新排序,其中包括以不同的方式消除和重新连接两条边以获得新的可行路径,如图 7b 所示(Muren 等人,2019 年)。此外,并非所有区域都可以在一段时间内提供服务,因此我们删除了当前路由中的一些区域(等价于站点),并以一定的概率添加未服务的区域。对于局部搜索过程的每次迭代,我们随机选择一个算子,可以充分利用算子的搜索能力,在一定程度上扩展搜索空间。将本VNS-ESA 算法与高性能商业求解器(CPLEX 12.10)等启发式算法进行数值比较,并在附录A中给出小规模算例,结果表明,VNS-ESA 算法在合理的时间内能够得到比 SA 和 VNS 算法更好的解.

在这里插入图片描述图 7.(a) 2-exchange算子和(b) 2-opt 算子的示意图。

4. 案例研究在实际的FFSB中的应用

4.1. 自由浮动共享单车数据

本研究分析了摩拜单车在北京收集的FFSB数据。2017 年 5 月 10 日至 5 月 24 日共记录了 992,183 条旅行记录,每条记录都包含自行车 ID、用户 ID、旅行时间、经度和纬度。研究区位于北京市三环内。由于FFSB分散在城市各处,没有对接站,研究区域被划分为729个网格(基础研究区),网格大小为500 m,如图10所示。我们假设用户可以在基础研究区找到FFSB的时间可以忽略不计。为了使用户在短距离内找到FFSB,并有效地在不同区域之间重新平衡FFSB,有必要控制网格的大小.

4.2. 空间和时间行程模式

我们按一周中的小时数汇总 FFSB 行程,以分析图 8 中的时间使用模式。总体而言,工作日的共享单车出行量大于周末(Du et al., 2019, Chang et al., 2020)。工作日的出行需求呈现出与通勤出行相关的三峰性质。然而,在周末,FFSB的旅行需求在很大程度上减少了,高峰时段变得不那么明显。
在这里插入图片描述图 8.FFSB 旅行需求汇总到一周中的几个小时

FFSB在工作日的空间出行量分布如图9所示。上午,大量的FFSB出行需求出现在三环路边缘,多在居民小区周边。后来,中午时分,很多旅行聚集在市中心的餐馆和购物中心。傍晚时分,人们乘坐FFSB从市中心的公司前往城市边缘的住宅区。整体而言,FFSB在白天的城市不同区域之间存在波动的空间和时间旅行需求。

在这里插入图片描述图 9.工作日FFSB的时空分布:(a). 6:00–7:00;(b) 8:00-9:00;(c) 12:00-13:00;及(d)18:00-19:00
在这里插入图片描述图10 工作日FFSB出行净流量分布:(a) 8:00–9:00;(b) 12:00-13:00;及(c)18:00–19:00。

图10显示了基于方程(13)的选定的729个网格中FFSB的净流量。可以看出,白天净流量分布是有波动的。在高峰时段,不同地区存在较大的需求缺口。每个网格(取货区或送货区)的作用随时间而变化。例如,在A区,在图10(a)中的早高峰时段出现了更多的流出流量。因此,有必要将FFSB转移到该区域。然而,在图10(c)的晚高峰期,流入的行程大于流出的行程,在此期间存在积压的FFSB,一些共享单车需要转移到其他区域。此外,B区和C区等其他区域的搬迁需求也各不相同。为了更好地满足用户的需求,应适当地对共享单车进行动态再平衡。

4.3. 损坏的 FFSB 分布

采用第3.2.2节中的算法1,我们检测了自由浮动共享单车系统中可能损坏的FFSB。根据北京胡家楼地铁站附近的一项调查(Daily,2017),随机抽取了50辆共享单车,以测试FFSB的自行车损坏率。其中,有三辆FFSB存在不同类型的问题,无法用于乘车。因此,本次调查中的自行车损坏率计算为 6.00%。在我们的实验中, K t K_t Kt K d K_d Kd 的值分别设置为 5 min 和 200 m ,这意味着同一用户在 5 分钟内连续解锁两辆不同的共享单车,并first trip距离小于 200 m判断出现损坏bike的要求。因此,我们可以在图 11 中得到损坏的 FFSB 的分布。根据历史旅行记录(historical travel records),已发现的受损FFSB数量为830个,研究区共使用了14,446个FFSB。因此,计算出的自行车损坏率为 5.75%。然后,我们根据发现损坏的共享单车的位置将其映射到相应的区域。值得注意的是,我们不能保证每辆发现的自行车都已损坏,但它们很有可能无法使用。因此,这些可能损坏的自行车值得收集并转移到仓库进行进一步检查和维修。为了获得更有效的参数设置,我们可以对损坏的自行车率进行更实际的调查。设置的 K t K_t Kt K d K_d Kd值越小,检测到的 FFSB 损坏的可能性就越大。这些参数可以根据实际需要确定。

5. 方法应用

5.1. 所提出的ATTPF模型的预测性能

将所提出的ATTPF模型应用于选定的749个区域的短期FFSB流入和流出预测。此外,80%的数据用作训练集,其余20%用作测试集。输入的历史流入和流出数据归一化为区间 [0, 1]。对于时间、星期几等分类变量,我们在数据处理阶段将其转换为独热编码形式。

ATTPF模型采用5种基线方法检验其预测性能,包括历史平均法(HA)、自回归综合移动法(ARIMA)、支持向量回归法(SVR)、门控循环单元法(GRU)和LSTM。HA和ARIMA(Ahmed和Cook,1979)是广泛使用的统计方法。SVR(江等人,2014),GRU(Ji和Hou,2017)和LSTM是最近开发的人工智能算法。均方根误差 (RMSE) 和平均绝对误差 (MAE) 被选为方程中的测量指标。 y ( i ) y^{(i)} y(i) y ( i ) ^ \widehat{y^{(i)}} y(i) 分别是在第 i i i个时间间隔内的inflow/outflow的真实值和预测值。 n n n是测试集合的大小。

在这里插入图片描述
表3显示了所提出的ATTPF模型与其他基线方法在流入和流出预测方面的性能比较。可以看出,ATTPF模型在几乎所有的评估指标下都获得了最佳的预测性能。对于1 h流出预测任务,与ARIMA、SVR、GRU和LSTM模型相比,ATTPF模型的RMSE分别降低了40.86%、17.74%、32.21%和22.37%。比较了不同模型的计算时间。虽然HA模型可以在短时间内做出预测,但预测误差较大。由于编解码过程和注意力机制的原因,所提出的ATTPF模型比LSTM和GRU模型需要更长的训练时间。总的来说,所提出的ATTPF模型可以在合理的时间内进行训练,并有效地实现短期预测任务。
在这里插入图片描述**消融研究(ablation studies)**以 1 小时的时间间隔进行,流入和流出数据集见表 4。我们将ATTPF框架的预测性能与多源数据进行了比较。ATTPF-T 仅使用历史行程数据。基于ATTPF-T模型,ATTPF-TW、ATTPF-TA和ATTPF-TE分别融合了天气变量(天气状态、温度、风速)、空气质量数据(AQI)、外部变量(星期几、小时)。正如预期的那样,ATTPF-ALL模型结合了上述所有组件和变量,从而大大提高了预测准确性。因此,所有这些变量都有助于提高FFSB出行需求的预测精度。我们选择两个典型的区域 A 和 B 来显示图 12 中的预测值和实际值,它们的地理位置可以在图 10 中找到。

在这里插入图片描述
在这里插入图片描述图 12.1小时预测流入和流出的可视化结果:(a)A区;(b) B区

5.2. 真实世界的搬迁优化

对于北京自行车搬迁的真实案例研究,整个城市被划分为不同的区域。每个区域都配备了一个仓库,该仓库存放了许多用于搬迁任务的运营共享自行车。搬迁车辆和工作人员在一天开始时从仓库出发,执行分配的任务。考虑到实际因素,例如分割区域的大小和搬迁车辆的速度,已安排由相应的仓库搬迁周边地区。本文将北京市三环路内的研究区域划分为729个区域,网格大小为500 m。在划分的区域中,我们假设有 4 个共享自行depot,它们位于图 13 中每个服务区的中心。例如,1 号车厂负责绿色区域中的共享单车搬迁任务。此外,在动态搬迁过程之前,检测到的损坏自行车被分配到相应的区域。

在这里插入图片描述
图 13.研究区域中区域和仓库的位置。

操作员(operators )在白天(即 8:00-18:00)驾驶车辆进行 FFSB 搬迁。动态搬迁的时间间隔可以是 1 h、2 h、3 h 等,将一天划分为几个时间段。在本文中,我们在表5中将每个周期的长度设置为1 h。在第一阶段,多辆搬迁车辆从仓库出发执行搬迁任务。在期间结束时(除上一期外),搬迁车辆将停留在最后服务区等待更新的搬迁路线,然后在下一个时期开始执行搬迁任务。在最后一个时期,所有搬迁车辆都应在仓库结束。考虑到前期损坏的自行车是在搬迁车辆中收集的,因此需要及时在仓库卸货。因此,我们设定搬迁车辆应在第 5 期和第 10 期结束时返回仓库。搬迁车辆的调度费用为 C d = 0.7 C_d=0.7 Cd=0.7 $/km.。我们假设服务费用是 C s = 0.05 C_s=0.05 Cs=0.05 $ 员工从搬迁车辆中移入(移出)一辆自行车的费用,单位服务时间为 L = 2 s L=2 s L=2s。搬迁车辆的载重量 设置为100每个区域的质心之间的移动距离可以根据它们的实际位置计算出来。搬迁车辆的行驶速度为 v = 35 v=35 v=35 km/h,参考2017年北京市平均车速(News, 2017)。未履行或延迟一次搬迁请求 C p C_p Cp 的罚款设置为 3。在一天开始时,我们假设每个仓库中有 4 辆车可用于搬迁。

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
表5为工作日(2017年5月15日)不同时段的详细优化搬迁结果,包括搬迁区域数量、使用搬迁车辆数量、搬迁距离成本、员工服务总成本、罚款成本和服务费率。服务费率是指已送达的FFSB与需要送达的FFSB的比率。请注意,在我们的案例研究中,我们没有考虑总搬迁需求少于 5 个的区域,因为有限的搬迁资源(车辆和人员)应该分配给急需搬迁的区域。这些模型由混合元启发式算法VNS-ESA求解。早高峰、中午、晚高峰时段的搬迁需求高于其他时段。这些搬迁任务需要安排更多的车辆和人员,这导致距离成本和员工服务成本的费用增加。 例如,在 2 区,第 1 期从仓库开始,有 64 个区域急需搬迁,而第 3 期只有 35 个区域需要服务。在四个服务区中,3区更多的区域需要在工作日提供服务,搬迁需求较高,尤其是在早晚高峰时段。此外,**每个停车场的初始 4 辆车无法为某些区域提供服务。**例如,区域 3 的服务费率在周期 5 中为 0.83,在周期 10 中为 0.76。一方面,一些区域的搬迁需求很高。另一方面,损坏的FFSB的收集占用了搬迁车辆的容量。因此,这些车辆应在一段时间后返回仓库。

图14比较了2号区域在工作日(2017年5月15日)和周末(2017年5月21日)不同时段的搬迁结果。周末的总搬迁费用低于工作日。例如,在白天,区域 2 的总搬迁成本在工作日为 606.21 美元,其中包含 434.56 美元的距离成本和 171.65 美元的员工服务成本,而在周末则减少到 494.44 美元。在工作日的三个高需求高峰期,员工服务成本占总搬迁成本的比重较大,如图14(a)所示,8:00-9:00为40.99%,17:00-18:00为37.59%,因为在这个时间间隔内需要完成更多的搬迁任务。在周末,员工服务成本的比例降低,并且在一天中的不同时段波动不大,如图14(d)所示。由于通勤次数的减少,需要搬迁的区域减少,搬迁需求也减少。因此,搬迁总距离和用于搬迁的车辆都比平日少。此外,周末下午的搬迁需求也有所增加。例如,图14(e)中42个区域需要在15:00-16:00期间重新定位,而图14(b)中工作日的同一时段只需要访问32个区域。

在这里插入图片描述图 14.2区平日和周末的搬迁结果:(a)平日搬迁费用;(b) 平日搬迁区的数目;(c) 工作日的总搬迁距离;(d) 周末搬迁费;(e) 周末搬迁区数目;(f) 周末总搬迁距离

在日常的FFSB搬迁过程中,企业应该有不同的策略来应对各种情况。例如,如果在早高峰时段出现高搬迁需求,搬迁车辆可能只考虑运营共享单车搬迁,以缓解已经发生的不平衡,而不是收集损坏的自行车。在一天中的这些时候,当务之急是专注于向供应不足的客户提供自行车。表 6 显示了周末(2017 年 5 月 21 日)区域 2 的详细优化搬迁结果,并采用两种策略(策略 1:搬迁运营和损坏的 FFSB;策略2:仅搬迁运营的FFSB)。对于不同的搬迁策略,可以观察到,考虑运营自行车和损坏的自行车搬迁会增加每日搬迁成本的价值,包括旅行距离成本和员工服务成本。具体而言,只有在特殊时间段搬迁运营自行车,才能降低总搬迁成本和员工服务成本。例如,在表 6 中,如果运营自行车和损坏的自行车都在第 1 期(策略 1)中重新定位,则距离成本为 45.66 $。但是,仅考虑运营自行车搬迁(策略2),距离成本降低到39.45 $。由于在某些区域,只有损坏的自行车需要搬迁。策略 2 可以采用紧急搬迁运营自行车,这对于在高峰时段搬迁是有效的。此外,当搬迁任务不繁重时,可以选择收集损坏的自行车。在非高峰时段,很少有搬迁任务需要足够的搬迁资源,例如在第 3 期和第 7 期。 此时,应考虑在不增加太多搬迁成本的情况下回收损坏的自行车,这将提升共享单车系统的服务水平,并及时降低用户在系统中发现损坏自行车的概率。

,,,,,,,差个表格

6.结论

在新兴的自由浮动共享单车系统中,共享单车可以停放在任何适当的位置,而不会出现停靠站的容量问题。然而,自由漂浮的共享单车(FFSB)在不同城市区域分布不均,损坏的自行车往往被随意遗弃在街上,占用了公共空间。因此,除了通过多辆搬迁车辆在不同区域之间重新平衡运营单车以满足用户波动的出行需求外,还需要将损坏的单车收集到仓库。

该文提出了一种数据驱动的数据驱动建模框架,用于考虑损坏自行车的收集,用于自由浮动共享单车系统中的动态搬迁。首先,研究了全市范围内FFSB的时空流动模式,分析了导致FFSB供需失衡的出行需求波动。其次,建立利用深度学习算法的ATTPF模型,预测不同区域共享单车的短期流入和流出,该模型采用嵌入注意力机制的编码器-解码器架构,进一步增强了模型的预测能力和灵活性;为了处理FFSB搬迁的动态性质,多周期优化方法将动态过程分解为一组具有固定持续时间的周期。针对每个时间段,根据用户出行行为,确定运营自行车的搬迁需求,并根据方法检测损坏的自行车。然后,提出一种数据驱动的优化模型,以制定同时重新定位运行和损坏的自行车的问题。采用结合增强模拟退火(ESA)算法和变邻域搜索(VNS)的新型混合元启发式算法进行路径设计优化。

小尺度数值算例表明,VNS-ESA算法在合理的计算时间内生成高质量的解决方案,优于基准算法。基于北京FFSB数据开展了一系列真实案例,对大规模搬迁进行优化。搬迁运营和损坏的自行车将导致更高的搬迁成本。只在搬迁资源有限的高峰时段搬迁运营自行车是有效的。未来的研究应将动态FFSB重新定位模型与多个仓库、多次访问和多目标功能相结合,同时考虑用户满意度和公司收入。此外,应针对大规模的现实搬迁开发更有效的强化学习算法,以提高自由浮动共享单车系统的服务水平

  • 15
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值