【论】GE-GAN: A novel deep learning framework for road traffic state estimation

解读GE-GAN: A novel deep learning framework for road traffic state estimation

摘要

交通状态估计是智能交通系统中至关重要的基本功能。然而,在现实世界中,收集的交通状态数据往往是不完整的。提出了一种新的深度学习框架,利用相邻路段的信息来估计道路交通状态。首先,基于图形嵌入实现道路网络的表示。其次,利用这些表示信息,利用生成性对抗网络实时生成道路交通状态信息。最后,以加州第七区和西雅图地区的两个典型路网为案例进行研究。实验结果表明,检测器估计的道路交通状态数据比其他模型估计的数据具有更高的精度。

1. introduction

随着出行和交通需求的增加,交通拥堵、交通安全等交通问题日益严峻,严重影响经济发展和人民生活(徐等,2015b)。道路交通状态的准确确定是解决这些交通问题的最重要和最基本的部分(徐等,2015a)。道路交通状态由许多交通检测器的测量值来表示。在现有文献(梁等,2018)中,交通状态通常是指交通流量、交通密度、交通速度和行驶时间。准确的交通状态估计可以使交通系统管理人员有效地处理和控制交通网络,避免交通堵塞。因此,旅行者可以更好地规划他们的出发时间和旅行路线,以使他们的旅行更有效率(徐等人,2012)。然而,由于检测器的稀疏分布,很难确定道路网络中的所有交通状态。

近来,已经提出了许多交通状态估计方法。现有的交通状态估计方法可分为两类:模型驱动方法和数据驱动方法(王等,2018)。前者主要使用宏观交通模型来描述高速公路走廊的交通状态,而后者应用基于交通状态检测器获得的已知测量的统计分析。传统的交通状态估计方法包括卡尔曼滤波器()(Nanthawichit等人,2003)、KFlike技术(KfT)、扩展卡尔曼滤波器()(王等人,2007)、无迹卡尔曼滤波器()(Pueboobpaphan等人,2007)、粒子滤波器(PF) (Mihaylova和Boel,2004)和非线性卡尔曼滤波器()(等人,2007)。KFTs是KF的一个扩展,它估计了与可用观测值、系统模型和噪声有关的最可能的状态变量。当道路条件和交通流条件相似时,道路交通运行状态具有一定的规律性和再现性(徐等,2014)。数据驱动方法通常从循环历史数据中提取时空特征检测器并应用统计或机器学习方法来推断实时交通状态。随着交通状态数据量的急剧增加,一些研究人员开发了越来越依赖历史数据的方法。自回归综合移动平均线(ARIMA)(李和范布罗,1999;徐等人,2017年)使用来自历史数据的时间序列数据集来估计交通状态。k-最近邻居(KNN) (Tak等人,2016年;徐等,2018)和概率主成分分析()(曲等,2009)已被用于合并额外的时空信息并提高交通状态估计的准确性。此外,随着机器学习的发展和计算能力的快速提高,出现了许多新的交通状态估计方法。基于张量分解的模型(吴等,2018;Bahadori等人,2014年;陈等人(2019)是使用邻域信息作为图正则化器来执行交通状态估计的代表性方法。然而,基于张量分解的模型总是将交通状态数据组织为三阶或更高阶的张量(例如路段×天×时间间隔),并且这些高维张量的计算需要高的存储器和计算能力。而且随着图神经网络的发展(Scarselli等,2008;梁和Bose,1996),已经提出了许多最新的基于图的交通状态估计模型(于等人,2017;Lee等人,2019年;郑等,2019)。

然而,大多数估计算法是基于时空相关性实现的,这通常是人工选择空间信息(李等人,2015;李等,2019)。因此,本文提出了一种基于遗传神经网络的深度学习框架来估计交通状态。基于遗传神经网络的深度学习框架是利用有效相邻路段的数据生成道路交通状态。因此,交通状态估计可以保证道路交通状态数据的完整性。道路交通状态估计主要包括以下两个问题:(1)如何选择有效的空间信息;(2)如何实时生成道路交通状态数据。为了解决这两个问题,使用图嵌入(GE) (Yan等人,2006)从道路网络中为目标道路选择最相关的道路,并使用生成对抗网络(GAN) (Goodfellow等人,2014)基于所选道路的时空信息生成目标道路交通状态检测器的数据。本文采用DeepWalk (Perozzi等人,2014)来获取道路网络中的空间表示信息,即使道路交通状态检测器稀疏,该方法也能有效地工作。

我们的贡献如下:

1) DeepWalk用于道路网络的图形嵌入;它将道路网络转移到低维空间,获取目标道路交通状态传感器的表示信息。
2)利用相邻路段的表示信息和道路交通状态信息,应用生成对抗网络学习道路交通状态数据分布,生成道路交通检测器的道路交通状态数据。此外,采用瓦瑟斯坦遗传神经网络(WGAN) (Arjovsky等人,2017)来训练遗传神经网络模型,以解决原始遗传神经网络的训练困难。
3)结果表明,基于遗传神经网络的深度学习框架具有更高的准确率,与现有的道路交通状态估计方法相比具有更好的性能。
论文的其余部分组织如下。第二节回顾了遗传算法和图嵌入的相关工作。第三节详细描述了道路交通状态估计的方法框架。第四节介绍了数值实验的结果和对案例研究的讨论。最后,本文在第五部分进行了总结。

2. Related work

在过去的几年里,深度学习方法在不同的领域得到了广泛的应用。与传统的神经网络相比,它们能够有效地从海量数据中提取特征。生成对抗网络为学习复杂的高维分布提供了一个强大的建模框架。遗传神经网络通过发生器G表示概率分布,发生器G学习从期望的分布直接产生样本。生成器通过优化一个极小极大目标和一个鉴别器d进行对抗性训练,形式上,设Pz(Z)为输入标准分布,Pdata(X)为训练数据分布;那么GANs的极小极大目标被定义为等式。(1).GANs的应用包括图像数据集合成(Shrivastava等人,2017)、图像到图像风格翻译(Isola等人,2017)、图像超分辨率(Ledig等人,2017)和对话生成(李等人,2017)。
&&& 公式1

最近,GANs也广泛应用于交通领域。基于神经网络的道路交通状态估计有许多新方法。例如,张提出了一个新的框架,该框架利用信息-遗传神经网络来估计行程时间分布与轨迹数据(张等人,2019年)。于用图形卷积网络作为GAN的内部结构来实时生成交通速度(于和顾,2019)。提出了基于GAN的模式敏感网络预测交通流(林等,2018)。但是GAN训练困难的问题是需要解决的,因为GAN最困难的部分是如何训练发生器和鉴别器达到一个纳什均衡,并处理模型崩溃的问题。工作组的提出是为了解决工作组的培训困难。WGAN提出了一种新的成本函数,该函数使用了比詹森-香农散度更平滑的瓦瑟斯坦距离。

由于网络在现实世界中的无处不在,图形分析越来越受到人们的关注。图形自然存在于各种各样的现实场景中,例如社交图、社交媒体网络中的扩散图、流量图、电子商务中的用户兴趣图和知识图。图嵌入将网络中的节点分配给低维表示并有效地保存网络结构。分析这些表示提供了如何很好地利用隐藏在图形中的信息的见解。图嵌入是一种很有前途的网络表示方法,能够支持后续的网络处理和分析任务,如节点分类(Bhatt等人,2011)、节点聚类(丁等人,2001)、网络可视化(Maaten和Hinton,2008)和链接预测(-诺埃尔和克莱因伯格,2007)。

3. Methodology

设G V E =(,)是一个道路网络,它是检测器V = d d d d((,,,,),n ^ 1 ^ 2和边E = = E { } ij I j ^ n,1的集合,其中V = n | |表示道路网络中检测器的数量。如果两个相应的链路相连,则认为两个检测器相邻。如果ithdetector和jthdetector在路网中不相邻,eij = 0;否则,eij= 1。让它成为目标道路交通状态检测器。然后,用于道路交通状态估计的GE-GAN算法的框架,如图1所示,由两部分组成:深度行走和GAN。DeepWalk的目标是获得道路网络的表示向量,并获得相应的交通状态矩阵。然后,目标检测器利用交通状态矩阵作为对抗训练的输入,生成目标检测器的交通状态数据。

3.1. Graph embedding of the road network based on DeepWalk

DeepWalk是一种典型的图嵌入方法,在图较大时可以并行训练。此外,它可以适应本地网络的变化,因为边和节点的变化只会影响一部分随机行走路径。它由两个主要部分组成:随机游走生成和更新过程。随机漫步已被用作内容推荐和社区检测中各种问题的相似性度量。Deepwalk可以利用网络中的相邻节点实现对目标节点的有效表示。对于道路网络,节点应该是道路交通状态检测器或路段,因此道路网络的Deepwalk可以被认为是原始道路网络的有效空间表示,这已被证明对于道路交通状态预测是有用的(徐等人,2019)。DeepWalk的架构如图2所示。让我们注意一个基于道路交通状态检测器di的随机行走。它是一个随机过程,随机变量W W W {,,,,d d d k 1 2 i i i i,W W W W = {,,,,} d d d d d k 1 2 I I I I I . Wd j ire在以didetector为根的walk中表示jthdetector,而W+ d j 1 i是从jthdetector中随机选择的检测器。对于每个检测器,随机游走的长度被指定为k,随机游走迭代次数。

在完成每个检测器的随机行走之后,采用Skip-Gram算法(Mikolov等人,2013)来更新这些表示。映射函数V V D × d : R| |给出了与路网中每个检测器D相关联的潜在表示。目标是为每个道路交通状态检测器di找到最相关的检测器。为此,模型必须最大化任何检测器出现在上下文中的概率;这在等式中表示为优化问题。(2).通过等式所示的更新过程。(2)可以实现原始矩阵的最有效表示(Perozzi等人,2014),这可以看作是在道路网络中搜索有效空间表示的过程。

&&&公式2
其中w是选定窗口的大小。
然后,逼近方程中的条件概率。(2)使用独立性假设,如等式。(3):

&&&公式3
这意味着每个检测器将映射到它当前的表示向量,其中D表示表示向量的维数。然后,为了减少所需的计算资源,将使用分层软最大值来近似概率分布。分层softmax将顶点分配给二叉树的叶子,将预测问题转化为最大化层次中特定路径概率的问题。假设+ + u d d d d {,,,,,} p i w i i i w 1 1,从树根d()到二叉树的叶子up的路径由树节点V b b b,,,1 2 | log | | |的序列来标识,并且V= b up |log| ||,那么u d Pr( | ( )) p i可以按等式计算。(4):

&&& 公式4

此外,b d Pr( | ( )) r i可以由分配给节点br的父节点的二进制分类器来建模,如等式所示。(5):
&&& 公式5

其中b()是分配给树节点br的父节点的表示。从情商。(2)可以得到最相关链路的表示流量状态矩阵。

3.2. The road traffic state generation based on the generative adversarial network

生成对抗网络的体系结构由生成者G和鉴别者d两部分组成,生成网络生成候选人,鉴别网络对候选人进行评价;生成器G学习从潜在空间映射到感兴趣的数据分布,鉴别器D区分由生成器生成的候选和真实数据分布。

生成器模型的目标是利用通用电气公司获得的表示信息生成目标检测器数据。鉴别器提供监督,以确保生成的数据分布与真实数据分布相似。

为了利用来自最相关检测器的空间信息,指定滑动窗口内的相关检测器的交通状态数据被表示为= + + + X x x x {,,,,} t t l t l t l t m t l t 1(1):2(1):(1)😃,其中l是滑动窗口的时间长度。滑动窗口包含从时间t 1+1到t的来自所表示的相邻检测器的时间和空间信息。检测器的滑动窗口被表示为= + + + x x x x {,,,},I t 1t 1t 1t 1t 1t(1):1 2,i m (1,2,…)。生成器可以生成一个检测器的道路交通状态数据:= + + X x x x ~ {,~} tar t tar t l tar t l tar t 1 2。在我们的模型中,氮化镓的结构如图3所示。

我们的实现采用了一种称为瓦瑟斯坦甘(WGAN)的GAN变体(Arjovsky等人,2017);这个变体优化了地球移动者的距离,而不是詹森-香农散度。它解决了GAN训练困难和崩溃模式的问题,可以保证生成样本的多样性。生成器接受一个输入:滑动窗口内表示的检测器的交通状态矩阵。

WGAN中的目标函数包括发生器损耗和鉴别器损耗。生成器的目标是生成遵循真实数据分布的数据。可以形成如式所示。(6):
&&& 公式6

其中一致性损失Lconsis用于减小探测器数据记录的重建误差,α是一致性损失系数。

鉴别器接收真实或生成的数据,然后输出标量。鉴别器的目标是最大化X D( ) tar t和X D(~ ) tar t之间的期望差,可以表示为等式。(7):
&&& 公式7

其中Xtar t是检测器滑动窗口内的真实历史数据,x~tar表示在时间t生成的交通状态数据。算法1中说明了这种学习方法的整个过程。

&&& 算法1

4. Experiments results

4.1. Data description

为了更好地评估模型的性能,在案例研究中使用了两种类型的数据集,包括交通量和速度数据。实验中使用了跨太平洋交通管理系统的交通量数据。Caltrans PeMS拥有超过15,000个探测器,每30秒收集一次交通数据(Duan等人,2016)。本研究采用2014年5月1日至2014年6月30日收集的体数据。对于每个检测器,收集的数据以5分钟为间隔进行汇总。为了建设公路网,24 选择了第七区的车辆检测站,每个检测站有17,568个数据点。表1显示了所选的虚拟桌面系统。

另一个数据集包含交通速度数据,是在西雅图地区收集的。该数据集包括323个检测器在一年内(2015 . 1 . 1–2015 . 12 . 31)的交通速度数据,涵盖四条相连的高速公路:I-5、I-405、I-90和SR-520(崔等人,2018)。数据收集间隔为5分钟。所有交通状态数据分为工作日模式和周末模式。

4.2. Model settings and evaluation criteria

模型设置由两部分组成:深度行走的参数和根的参数。DeepWalk对两个数据的参数设置如下:选定窗口大小w = 5;随机游动的迭代次数η= 10;嵌入尺寸D = 64选定的相邻探测器数量m = 4 (PeMS数据集)和m = 10(西雅图数据集);随机行走的长度k = 40 (PeMS数据集)和k = 100(西雅图数据集)。

两个数据集具有相同的GAN参数,设置如下:生成器和鉴别器各有三个隐藏层;隐藏层单元的数量是[512,256,128];每个隐藏层的激活函数是ReLU函数。此外,发生器中输出层的激活函数是sigmoid函数。鉴别器的输出层没有激活功能。高斯噪声被应用于模型输入,并且当评估噪声对模型性能的影响时,大小被设置为50。20%的数据被用作测试集来评估所提出的模型的性能。稠度损失系数α= 100;学习率lr = 0.00005。

为了评估所提出方法的性能,采用了三个标准来测量生成数据的误差:平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE),如下所示:

&&& 公式8910

其中K表示交通流样本总数,x ~ tar表示生成的道路交通状态,xtar表示真实的道路交通状态。

4.3. Baseline methods

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值