一:二分法
(1)、算法介绍
①、基本理念
二分法查找,也称为折半法,是一种在有序数组中查找特定元素的搜索算法。
二分法查找的思路如下:
(1)首先,从数组的中间元素开始搜索,如果该元素正好是目标元素,则搜索过程结束,否则执行下一步。
(2)如果目标元素大于/小于中间元素,则在数组大于/小于中间元素的那一半区域查找,然后重复步骤(1)的操作。
(3)如果某一步数组为空,则表示找不到目标元素。
二分法查找的时间复杂度O(logn)。
②、代码模板:
int binarySearch(int *nums, int numsSize, int target)
{
//开始下标
int start = 0;
//结束下标
int end = numsSize - 1;
while (start <= end)
{
int middle = (start + end) / 2;
//执行(1)
if (nums[middle] == target)
return middle;
//执行(2)
if (nums[middle] < target)
start = middle + 1;
else
end = middle - 1;
}
return -1;
}
(2)、例题(力扣试题)
你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。
假设你有 n 个版本 [1, 2, …, n],你想找出导致之后所有版本出错的第一个错误的版本。
你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
示例 1:
输入:n = 5, bad = 4
输出:4
解释:
调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true
所以,4 是第一个错误的版本。
示例 2:
输入:n = 1, bad = 1
输出:1
提示:
1 <= bad <= n <= 2^31 - 1
本题就是二分法查找的变形。
为了减少查找的次数,采用折半查找。这里的关键点是在什么情况下return值。为了找出第一个错误版本,要保证前面一个是正确版本。代码如下
int firstBadVersion(int n)
{
int start = 1, end = n;
if (isBadVersion(1))
return 1;
while (start <= end)
{
//注意middle赋值方式 middle=(start+end)/2
int middle = start + (end - start) / 2;
//保证前面一个是正确版本。
if (isBadVersion(middle))
{
if (!isBadVersion(middle - 1))
return middle;
else
end = middle - 1;
}
else
start = middle + 1;
}
return 1;
}
**注意:**这里n<=2^31-1
如果middle采用middle=(start+end)/2赋值方式,很有可能发生溢出
解决方式:
- 在生命变量时类型为long long int 即:long long int middle=(start+end)/2 这样做内存占用会变大
- 使用int middle=start+(end-start)/2这样不会发生溢出的情况,并且也不会占用太大内存。