随机变量Z=Y/X、Z=XY的分布

(X,Y)是二维连续型随机变量,它的联合概率密度是f(x,y),则Z=\frac{Y}{X}  和Z=XY仍然为连续型随机变量。

Z=\frac{Y}{X}的概率密度为:

f_{Y/X}(z)=\int_{-\infty }^{\infty }\left | x \right |f(x,xz)dx\; \; \; \; \; \; \; \; (1)

Z=XY的概率密度为:

f_{XY}(z)=\int_{-\infty }^{\infty }\frac{1}{\left | x \right |}f(x,\frac{z}{x})dx\; \; \; \; \; \; \; \; (2)

更进一步,如果XY相互独立,设(X,Y)关于X的边缘概率密度为f_{X}(x),关于Y的边缘概率密度为f_{Y}(y),那么

上面的(1)式化简为:

f_{Y/X}(z)=\int_{-\infty }^{\infty }\left | x \right |f_{X}(x)f_{Y}(xz)dx\; \; \; \; \; \; \; \; (3)

上面的(2)式化简为:

f_{XY}(z)=\int_{-\infty }^{\infty }\frac{1}{\left | x \right |}f_{X}(x)f_{Y}(\frac{z}{x})dx\; \; \; \; \; \; \; \; (4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值