阶跃函数(阶跃信号)

阶跃函数

阶跃函数可以表示为

f(t)=\left\{\begin{matrix} 0,\; \; \; \; t<0\\ R,\; \; \; \; t\geq 0 \end{matrix}\right.

更一般的形式,称为“延时的阶跃函数”:

f(t-t_{0})=\left\{\begin{matrix} 0,\; \; \; \; t<t_{0}\\ R,\; \; \; \; t\geq t_{0} \end{matrix}\right.

单位阶跃函数

单位阶跃函数用符号\varepsilon (t)表示,有的地方也用1(t)、或u(t)表示

1(t)=u(t)=\varepsilon (t)=\left\{\begin{matrix} 0,\; \; \; \; t<0\\ 1,\; \; \; \; t\geq 0 \end{matrix}\right.

在跳变点t=0处,函数值未定义,或在t=0处规定函数值u(0)=\frac{1}{2}

单位阶跃函数的波形为

单位阶跃函数的物理背景是,在t=0时刻对某一电路接入单位电源(可以是直流电压源或直流电流源),并且无限持续下去。

容易证明,单位斜变函数的导数等于单位阶跃函数。

延时的单位阶跃函数

更一般的形式,称为“延时的单位阶跃函数”:

1(t-t_{0})=u(t-t_{0})=\varepsilon (t-t_{0})=\left\{\begin{matrix} 0,\; \; \; \; t<t_{0}\\ 1,\; \; \; \; t\geq t_{0} \end{matrix}\right.

波形为

用阶跃信号表示其它信号的接入特性

阶跃信号鲜明地表现出信号的单边特性,即信号在某接入时刻t_{0}以前的幅度为零。利用阶跃信号这一特性,可以方便地以数学方式描述各种信号的接入特性。

例如:f_{1}(t)=(\sin t)u(t)的波形为

f_{2}(t)=e^{-t}[u(t)-u(t-t_{0})]的波形为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值