中心极限定理之棣莫弗-拉普拉斯(De Moivre-Laplace)定理

设随机变量\eta _{n}(n=1,2,\cdots )服从参数为n,p(0<p<1)的二项分布,则对于任意x\eta _{n}的标准化变量的分布函数为

\lim_{n \to \infty }P\left \{ \frac{\eta _{n}-np}{\sqrt{np(1-p)}}\leq x \right \}=\int_{-\infty }^{x}\frac{1}{\sqrt{2\pi }}e^{-t^{2}/2}dt=\Phi (x)\; \; \; \; (1)

这个定理表明,正态分布是二项分布的极限分布。当n充分大时,我们可以利用正态分布来近似计算二项分布的概率。

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值