线性系统的重要特性是叠加原理:即系统具有可叠加性和均匀性(也称齐次性)。
对于给定的线性系统,和
代表一对激励和响应,
和
代表另一对激励和响应,则当激励是
(其中
和
是常数)时,系统的响应为
。
例如,对于线性微分方差
设当输入时,上述方程的解为
;当输入
时,上述方程的解为
。
那么,可以证明,当输入时,方程的解必为
,这就是可叠加性。
也可以证明,当输入时,其中
为常数,那么方程的解必为
,这就是均匀性(也称齐次性)。
线性系统的叠加原理表明,多个输入同时作用于系统的总输出,等于各输入单独作用于系统的输出的和。并且,当输入增加多少倍,输出也相应地增加多少倍。因此,对于线性系统的分析和设计,如果有多个输入同时作用于系统,那么可以将这几个输入分别处理,依次求出它们的输出,然后将输出叠加,就是总的输出。