线性系统的基本特性

线性系统的重要特性是叠加原理:即系统具有可叠加性和均匀性(也称齐次性)。

对于给定的线性系统,e_{1}(t)r_{1}(t)代表一对激励和响应,e_{2}(t)r_{2}(t)代表另一对激励和响应,则当激励是C_{1}e_{1}(t)+C_{2}e_{2}(t)(其中C_{1}C_{2}是常数)时,系统的响应为C_{1}r_{1}(t)+C_{2}r_{2}(t)

例如,对于线性微分方差

\frac{\mathrm{d^{2}} c(t)}{\mathrm{d} t^{2}}+2\frac{\mathrm{d} c(t)}{\mathrm{d} t}+3c(t)=u(t)

设当输入u(t)=u_{1}(t)时,上述方程的解为c_{1}(t);当输入u(t)=u_{2}(t)时,上述方程的解为c_{2}(t)

那么,可以证明,当输入u(t)=u_{1}(t)+u_{2}(t)时,方程的解必为c_{1}(t)+c_{2}(t),这就是可叠加性

也可以证明,当输入u(t)=Au_{1}(t)时,其中A为常数,那么方程的解必为Ac_{1}(t),这就是均匀性(也称齐次性)

线性系统的叠加原理表明,多个输入同时作用于系统的总输出,等于各输入单独作用于系统的输出的和。并且,当输入增加多少倍,输出也相应地增加多少倍。因此,对于线性系统的分析和设计,如果有多个输入同时作用于系统,那么可以将这几个输入分别处理,依次求出它们的输出,然后将输出叠加,就是总的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值