旋转数组(easy)

给你一个数组,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:

输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释: 
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
 

提示:

1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
 

进阶:

尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?
相关标签

C++

class Solution {
public:
    void rotate(vector<int>& nums, int k) {
        int len=nums.size();
        k%=len;
        if(k==0||len==1) return ;
        int temp;        
        temp=nums[0];
        int count = 0;
        for(int i=k,cnt=0;cnt<len;i+=k,cnt++)
        {
         int t=nums[i%len];
         nums[i%len]=temp;
         temp=t;
         if(i%len==count) 
         {
                count++;
                i = count;
                temp = nums[(i) % len];
         }
        }
        
    }
};

思路:首先我们要对旋转数组有清晰认识,旋转数组就是将后几个元素旋转到前面来,相当于都后退k步,引用约瑟夫环把数组想成环形,以k步为一段,不停循环向前,基本就是接受前一个值,传递下一个值。

  

注意:约瑟夫环有特殊情况,当length%k==0时,会不停止循环(或者说仍然回到数组头位置)。对此,我们用count计数,当i%len==count时,表明已经轮完一圈,我们就使count++,使得它进入下一圈,由于大循环的存在,总体交换数仍为length,总圈数为length/k圈。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值