给你一个数组,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
进阶:
尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?
相关标签
C++
class Solution {
public:
void rotate(vector<int>& nums, int k) {
int len=nums.size();
k%=len;
if(k==0||len==1) return ;
int temp;
temp=nums[0];
int count = 0;
for(int i=k,cnt=0;cnt<len;i+=k,cnt++)
{
int t=nums[i%len];
nums[i%len]=temp;
temp=t;
if(i%len==count)
{
count++;
i = count;
temp = nums[(i) % len];
}
}
}
};
思路:首先我们要对旋转数组有清晰认识,旋转数组就是将后几个元素旋转到前面来,相当于都后退k步,引用约瑟夫环把数组想成环形,以k步为一段,不停循环向前,基本就是接受前一个值,传递下一个值。
注意:约瑟夫环有特殊情况,当length%k==0时,会不停止循环(或者说仍然回到数组头位置)。对此,我们用count计数,当i%len==count时,表明已经轮完一圈,我们就使count++,使得它进入下一圈,由于大循环的存在,总体交换数仍为length,总圈数为length/k圈。