题目描述
Yazid 是一名 OI 初学者。他最近在研究基础数据结构:队列和栈。某天,Yazid 脑洞大开,发明了一种叫做“队栈”的数据结构。众所周知,队列是先进先出的数据结构,而栈是先进后出的数据结构。而 Yazid 发明的队栈则同时支持查询并删除其中 最早被插入的元素和最晚被插入的元素。Yazid 有一个初始为空的队栈和一个 黑盒(这是一个存放数字的盒子),接下来,他要依次执行 Q 个操作。操作分为 4 种:
1. push:将一个非负整数加入队栈。
2. pop_queue:找出队栈中最 早被插入的元素,将其取出放入黑盒,并从队栈中删除。
3. pop_stack:找出队栈中最 晚被插入的元素,将其取出放入黑盒,并从队栈中删除。
4. print:将黑盒中的所有数取出,并按被放入的先后顺序从左到右排列得到一个整数。
例如:
黑盒中依次被放入了 0, 23, 330, 6,
那么获得并打印的整数即是 233306。
由于 Yazid 懒得在每次 push 操作时想插入的数,因此他提前写好了一个长度为 n 的插入序列 A(下标从 1 开始)。在接下来的所有 push 操作中,Yazid 会依次地、循环地将这些数加入队栈。具体来说:
• 在首次 push 操作时,Yazid 会将 A 1 加入队栈。
• 在之后的每次 push 操作中,假设 Yazid 上次 push 时加入的数是 A i ,则本次他会将 A i+1 加入队栈。特别地,如果 i = n,则 Yazid 本次会将 A 1 加入队栈。
请你依次输出 Yazid 通过 print 操作获得的整数。
输入格式
从文件 staqueue.in 中读入数据。
第 1 行一个整数 n,表示插入序列的长度。
第 2 行 n 个用单个空格隔开的非负整数 A 1 , A 2 , . . . , A n ,描述插入序列。
第 3 行一个整数 Q,表示操作数目。
第 4 行 Q 个紧挨着的 1 ∼ 4 之间的数字,依次描述每个操作,每个数字表示操作
的编号(各操作对应的编号见题目描述)
。
• 保证所有操作的合法性。即保证:
– 执行任意 pop_queue 和 pop_stack 操作时队栈不为空。
– 执行任意 print 操作时黑盒不为空。
输出格式
对于所有 print 操作,输出一行一个整数,表示该 print 操作中 Yazid 获得的数。
样例输入#1
2
1 2
7
1112324
样例输出#1
112
样例输入#2
4
0 23 330 6
12
121313124134
样例输出#2
23306
0
参考代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <queue>
#define ll long long
using namespace std;
vector <int> v;
queue <int> c;
vector <int> ans;
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)
{
int x;
cin>>x;
c.push(x);
}
int Q;
cin>>Q;
string s;
cin>>s;
for(int i = 0; i < Q; i++)
{
int x = s[i] - '0';
if(x == 1)
{
v.push_back(c.front());
int t = c.front();
c.pop();
c.push(t);
}
else if(x == 2)
{
ans.push_back(*(v.begin()));
v.erase(v.begin());
}
else if(x == 3)
{
ans.push_back(*(v.end() - 1));
v.erase(v.end() - 1);
}
else
{
bool flag = false;
for(vector<int>::iterator iter = ans.begin(); iter != ans.end(); iter++)
{
if(*iter != 0)
{
flag = true;
break;
}
}
if(flag)
{
bool f = false;
for(vector<int>::iterator iter = ans.begin(); iter != ans.end(); iter++)
{
if(*iter != 0)
f = true;
if(f)
cout<<*iter;
}
}
else
cout<<0;
cout<<endl;
ans.clear();
}
}
return 0;
}