AML 1
计算学习理论,PAC(probably approximately correct,概率近似正确)learning model Pfx-y<ϵ≥1-δ
fx-y<ϵ泛化误差尽可能小于ϵ ,PEh<ϵ≥1-δ尽可能正确,以较大的概率学的误差满足预设上限的模型。
归纳偏好(inductive bias)一般原则:奥卡姆剃刀(Ocam’s razor)如无必要,勿增实体,避重趋轻,避繁逐简,以简御繁,避虚就实。
泛化误差:在“未来”样本上的误差
经验误差:在训练集上的误差,亦“训练误差”
三个关键问题:
- 如何获得测试结果?
- 如何评估性能优劣?
- 如何判断实质差别?
- 评估方法
- 性能度量
- 比较检验
泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度共同决定